Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations
Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, littl...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-10, Vol.13 (10), p.e0204825 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 10 |
container_start_page | e0204825 |
container_title | PloS one |
container_volume | 13 |
creator | Fizil, Ádám Sonderegger, Christoph Czajlik, András Fekete, Attila Komáromi, István Hajdu, Dorottya Marx, Florentine Batta, Gyula |
description | Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF. |
doi_str_mv | 10.1371/journal.pone.0204825 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2120176692</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A559617740</galeid><doaj_id>oai_doaj_org_article_b590f64654774110a3f144f929d0a3b5</doaj_id><sourcerecordid>A559617740</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6a737b894c8ca8fa787a4be10ffd9c36f36442567a8093e5ddeaf8c1b6d8e6ee3</originalsourceid><addsrcrecordid>eNqNkm-LEzEQxhdRvPP0G4gGBEGwNdnsZrO-EEr1tHDnyZ36NmTzp03ZTXpJVuy3N233ji4oSF4kzPzmmWHyZNlzBKcIV-jd2vXe8na6cVZNYQ4LmpcPslNU43xCcogfHr1PsichrCEsMSXkcXaCIc4RovlpdjvnrTB9BxpjpbFL4DSIKwW4jUb3dslbsPEuKmPBt9n5e3ATfS9i79VbILeWd0aExEqQWBGNs4CHjRIxgGYLvl5e73OXH0EwXd_yHRCeZo80b4N6Ntxn2Y_zT9_nXyYXV58X89nFRJA6jxPCK1w1tC4EFZxqXtGKF41CUGtZC0w0JkWRl6TiFNZYlVIqrqlADZFUEaXwWfbyoLtpXWDDtgLLUQ5RRVKPRCwOhHR8zTbedNxvmeOG7QPOLxn30YhWsaasoSYFKYuqKhCCHGtUFLrOa5neTZm0Pgzd-qZTUigbPW9HouOMNSu2dL8YQZSSuk4CrwYB7257FeI_Rh6o9DGKGatdEhOdCYLNyrImKI0HEzX9C5WOVOnDkl-0SfFRwZtRQWKi-h2XvA-BLW6u_5-9-jlmXx-xK8XbuAqu7fdGGIPFARTeheCVvt8cgmxn97ttsJ3d2WD3VPbieOv3RXf-xn8A3pb6fg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120176692</pqid></control><display><type>article</type><title>Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Fizil, Ádám ; Sonderegger, Christoph ; Czajlik, András ; Fekete, Attila ; Komáromi, István ; Hajdu, Dorottya ; Marx, Florentine ; Batta, Gyula</creator><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Fizil, Ádám ; Sonderegger, Christoph ; Czajlik, András ; Fekete, Attila ; Komáromi, István ; Hajdu, Dorottya ; Marx, Florentine ; Batta, Gyula ; Permyakov, Eugene A.</creatorcontrib><description>Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204825</identifier><identifier>PMID: 30321182</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Antifungal activity ; Antifungal agents ; Aspartates ; Binding Sites ; Bioinformatics ; Biology and Life Sciences ; C-Terminus ; Calcium ; Calcium (extracellular) ; Calcium - metabolism ; Calcium binding proteins ; Calcium ions ; Calcium-binding protein ; Calorimetry ; Computer simulation ; Dynamic structural analysis ; Fungal Proteins - chemistry ; Fungal Proteins - genetics ; Fungal Proteins - metabolism ; Fungal Proteins - toxicity ; Fungi ; Fungicides ; Homeostasis ; Ion impact ; Ions ; Laboratories ; Magnetic resonance ; Magnetic Resonance Spectroscopy ; Medicine and Health Sciences ; Models, Molecular ; Molecular biology ; Molecular dynamics ; Molecular Dynamics Simulation ; Mutation ; Neurospora ; Neurospora crassa - drug effects ; NMR ; Nuclear magnetic resonance ; Organic chemistry ; Penicillium chrysogenum ; Penicillium chrysogenum - growth & development ; Penicillium chrysogenum - metabolism ; Physical Sciences ; Protein Binding ; Protein structure ; Proteins ; Research and Analysis Methods ; Serine ; Signal transduction ; Simulation ; Structure-function relationships ; Titration ; Titration calorimetry ; Toxicity</subject><ispartof>PloS one, 2018-10, Vol.13 (10), p.e0204825</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Fizil et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Fizil et al 2018 Fizil et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6a737b894c8ca8fa787a4be10ffd9c36f36442567a8093e5ddeaf8c1b6d8e6ee3</citedby><cites>FETCH-LOGICAL-c692t-6a737b894c8ca8fa787a4be10ffd9c36f36442567a8093e5ddeaf8c1b6d8e6ee3</cites><orcidid>0000-0002-0442-1828 ; 0000-0002-8408-1842</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188699/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6188699/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30321182$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Permyakov, Eugene A.</contributor><creatorcontrib>Fizil, Ádám</creatorcontrib><creatorcontrib>Sonderegger, Christoph</creatorcontrib><creatorcontrib>Czajlik, András</creatorcontrib><creatorcontrib>Fekete, Attila</creatorcontrib><creatorcontrib>Komáromi, István</creatorcontrib><creatorcontrib>Hajdu, Dorottya</creatorcontrib><creatorcontrib>Marx, Florentine</creatorcontrib><creatorcontrib>Batta, Gyula</creatorcontrib><title>Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF.</description><subject>Analysis</subject><subject>Antifungal activity</subject><subject>Antifungal agents</subject><subject>Aspartates</subject><subject>Binding Sites</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>C-Terminus</subject><subject>Calcium</subject><subject>Calcium (extracellular)</subject><subject>Calcium - metabolism</subject><subject>Calcium binding proteins</subject><subject>Calcium ions</subject><subject>Calcium-binding protein</subject><subject>Calorimetry</subject><subject>Computer simulation</subject><subject>Dynamic structural analysis</subject><subject>Fungal Proteins - chemistry</subject><subject>Fungal Proteins - genetics</subject><subject>Fungal Proteins - metabolism</subject><subject>Fungal Proteins - toxicity</subject><subject>Fungi</subject><subject>Fungicides</subject><subject>Homeostasis</subject><subject>Ion impact</subject><subject>Ions</subject><subject>Laboratories</subject><subject>Magnetic resonance</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular dynamics</subject><subject>Molecular Dynamics Simulation</subject><subject>Mutation</subject><subject>Neurospora</subject><subject>Neurospora crassa - drug effects</subject><subject>NMR</subject><subject>Nuclear magnetic resonance</subject><subject>Organic chemistry</subject><subject>Penicillium chrysogenum</subject><subject>Penicillium chrysogenum - growth & development</subject><subject>Penicillium chrysogenum - metabolism</subject><subject>Physical Sciences</subject><subject>Protein Binding</subject><subject>Protein structure</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Serine</subject><subject>Signal transduction</subject><subject>Simulation</subject><subject>Structure-function relationships</subject><subject>Titration</subject><subject>Titration calorimetry</subject><subject>Toxicity</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkm-LEzEQxhdRvPP0G4gGBEGwNdnsZrO-EEr1tHDnyZ36NmTzp03ZTXpJVuy3N233ji4oSF4kzPzmmWHyZNlzBKcIV-jd2vXe8na6cVZNYQ4LmpcPslNU43xCcogfHr1PsichrCEsMSXkcXaCIc4RovlpdjvnrTB9BxpjpbFL4DSIKwW4jUb3dslbsPEuKmPBt9n5e3ATfS9i79VbILeWd0aExEqQWBGNs4CHjRIxgGYLvl5e73OXH0EwXd_yHRCeZo80b4N6Ntxn2Y_zT9_nXyYXV58X89nFRJA6jxPCK1w1tC4EFZxqXtGKF41CUGtZC0w0JkWRl6TiFNZYlVIqrqlADZFUEaXwWfbyoLtpXWDDtgLLUQ5RRVKPRCwOhHR8zTbedNxvmeOG7QPOLxn30YhWsaasoSYFKYuqKhCCHGtUFLrOa5neTZm0Pgzd-qZTUigbPW9HouOMNSu2dL8YQZSSuk4CrwYB7257FeI_Rh6o9DGKGatdEhOdCYLNyrImKI0HEzX9C5WOVOnDkl-0SfFRwZtRQWKi-h2XvA-BLW6u_5-9-jlmXx-xK8XbuAqu7fdGGIPFARTeheCVvt8cgmxn97ttsJ3d2WD3VPbieOv3RXf-xn8A3pb6fg</recordid><startdate>20181015</startdate><enddate>20181015</enddate><creator>Fizil, Ádám</creator><creator>Sonderegger, Christoph</creator><creator>Czajlik, András</creator><creator>Fekete, Attila</creator><creator>Komáromi, István</creator><creator>Hajdu, Dorottya</creator><creator>Marx, Florentine</creator><creator>Batta, Gyula</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0442-1828</orcidid><orcidid>https://orcid.org/0000-0002-8408-1842</orcidid></search><sort><creationdate>20181015</creationdate><title>Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations</title><author>Fizil, Ádám ; Sonderegger, Christoph ; Czajlik, András ; Fekete, Attila ; Komáromi, István ; Hajdu, Dorottya ; Marx, Florentine ; Batta, Gyula</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6a737b894c8ca8fa787a4be10ffd9c36f36442567a8093e5ddeaf8c1b6d8e6ee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Antifungal activity</topic><topic>Antifungal agents</topic><topic>Aspartates</topic><topic>Binding Sites</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>C-Terminus</topic><topic>Calcium</topic><topic>Calcium (extracellular)</topic><topic>Calcium - metabolism</topic><topic>Calcium binding proteins</topic><topic>Calcium ions</topic><topic>Calcium-binding protein</topic><topic>Calorimetry</topic><topic>Computer simulation</topic><topic>Dynamic structural analysis</topic><topic>Fungal Proteins - chemistry</topic><topic>Fungal Proteins - genetics</topic><topic>Fungal Proteins - metabolism</topic><topic>Fungal Proteins - toxicity</topic><topic>Fungi</topic><topic>Fungicides</topic><topic>Homeostasis</topic><topic>Ion impact</topic><topic>Ions</topic><topic>Laboratories</topic><topic>Magnetic resonance</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular dynamics</topic><topic>Molecular Dynamics Simulation</topic><topic>Mutation</topic><topic>Neurospora</topic><topic>Neurospora crassa - drug effects</topic><topic>NMR</topic><topic>Nuclear magnetic resonance</topic><topic>Organic chemistry</topic><topic>Penicillium chrysogenum</topic><topic>Penicillium chrysogenum - growth & development</topic><topic>Penicillium chrysogenum - metabolism</topic><topic>Physical Sciences</topic><topic>Protein Binding</topic><topic>Protein structure</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Serine</topic><topic>Signal transduction</topic><topic>Simulation</topic><topic>Structure-function relationships</topic><topic>Titration</topic><topic>Titration calorimetry</topic><topic>Toxicity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fizil, Ádám</creatorcontrib><creatorcontrib>Sonderegger, Christoph</creatorcontrib><creatorcontrib>Czajlik, András</creatorcontrib><creatorcontrib>Fekete, Attila</creatorcontrib><creatorcontrib>Komáromi, István</creatorcontrib><creatorcontrib>Hajdu, Dorottya</creatorcontrib><creatorcontrib>Marx, Florentine</creatorcontrib><creatorcontrib>Batta, Gyula</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Agricultural & Environmental Science</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>https://resources.nclive.org/materials</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fizil, Ádám</au><au>Sonderegger, Christoph</au><au>Czajlik, András</au><au>Fekete, Attila</au><au>Komáromi, István</au><au>Hajdu, Dorottya</au><au>Marx, Florentine</au><au>Batta, Gyula</au><au>Permyakov, Eugene A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-10-15</date><risdate>2018</risdate><volume>13</volume><issue>10</issue><spage>e0204825</spage><pages>e0204825-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Calcium ions (Ca2+) play an important role in the toxicity of the cysteine-rich and cationic antifungal protein PAF from Penicillium chrysogenum: high extracellular Ca2+ levels reduce the toxicity of PAF in the sensitive model fungus Neurospora crassa in a concentration dependent way. However, little is known about the mechanistic details of the Ca2+ ion impact and the Ca2+ binding capabilities of PAF outside the fungal cell, which might be the reason for the activity loss. Using nuclear magnetic resonance (NMR), isothermal titration calorimetry and molecular dynamics (MD) simulations we demonstrated that PAF weakly, but specifically binds Ca2+ ions. MD simulations of PAF predicted one major Ca2+ binding site at the C-terminus involving Asp53 and Asp55, while Asp19 was considered as putative Ca2+ binding site. The exchange of Asp19 to serine had little impact on the Ca2+ binding, however caused the loss of antifungal activity, as was shown in our recent study. Now we replaced the C-terminal aspartates and expressed the serine variant PAFD53S/D55S. The specific Ca2+ binding affinity of PAFD53S/D55S decreased significantly if compared to PAF, whereas the antifungal activity was retained. To understand more details of Ca2+ interactions, we investigated the NMR and MD structure/dynamics of the free and Ca2+-bound PAF and PAFD53S/D55S. Though we found some differences between these protein variants and the Ca2+ complexes, these effects cannot explain the observed Ca2+ influence. In conclusion, PAF binds Ca2+ ions selectively at the C-terminus; however, this Ca2+ binding does not seem to play a direct role in the previously documented modulation of the antifungal activity of PAF.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30321182</pmid><doi>10.1371/journal.pone.0204825</doi><tpages>e0204825</tpages><orcidid>https://orcid.org/0000-0002-0442-1828</orcidid><orcidid>https://orcid.org/0000-0002-8408-1842</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-10, Vol.13 (10), p.e0204825 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2120176692 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library |
subjects | Analysis Antifungal activity Antifungal agents Aspartates Binding Sites Bioinformatics Biology and Life Sciences C-Terminus Calcium Calcium (extracellular) Calcium - metabolism Calcium binding proteins Calcium ions Calcium-binding protein Calorimetry Computer simulation Dynamic structural analysis Fungal Proteins - chemistry Fungal Proteins - genetics Fungal Proteins - metabolism Fungal Proteins - toxicity Fungi Fungicides Homeostasis Ion impact Ions Laboratories Magnetic resonance Magnetic Resonance Spectroscopy Medicine and Health Sciences Models, Molecular Molecular biology Molecular dynamics Molecular Dynamics Simulation Mutation Neurospora Neurospora crassa - drug effects NMR Nuclear magnetic resonance Organic chemistry Penicillium chrysogenum Penicillium chrysogenum - growth & development Penicillium chrysogenum - metabolism Physical Sciences Protein Binding Protein structure Proteins Research and Analysis Methods Serine Signal transduction Simulation Structure-function relationships Titration Titration calorimetry Toxicity |
title | Calcium binding of the antifungal protein PAF: Structure, dynamics and function aspects by NMR and MD simulations |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T10%3A52%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Calcium%20binding%20of%20the%20antifungal%20protein%20PAF:%20Structure,%20dynamics%20and%20function%20aspects%20by%20NMR%20and%20MD%20simulations&rft.jtitle=PloS%20one&rft.au=Fizil,%20%C3%81d%C3%A1m&rft.date=2018-10-15&rft.volume=13&rft.issue=10&rft.spage=e0204825&rft.pages=e0204825-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204825&rft_dat=%3Cgale_plos_%3EA559617740%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2120176692&rft_id=info:pmid/30321182&rft_galeid=A559617740&rft_doaj_id=oai_doaj_org_article_b590f64654774110a3f144f929d0a3b5&rfr_iscdi=true |