Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale

Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-10, Vol.13 (10), p.e0200119-e0200119
Hauptverfasser: Jazvinscak Jembrek, Maja, Vlainic, Josipa, Cadez, Vida, Segota, Suzana
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0200119
container_issue 10
container_start_page e0200119
container_title PloS one
container_volume 13
creator Jazvinscak Jembrek, Maja
Vlainic, Josipa
Cadez, Vida
Segota, Suzana
description Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cellular effects of free radicals and evaluation of the efficacy of drug treatment. Here, an interdisciplinary approach using atomic force microscopy (AFM) and cellular and biological molecular methods were used to investigate oxidative damage in P19 neurons and to reveal the underlying mechanism of protective action of quercetin. Biological methods demonstrated the oxidative damage of P19 neurons and showed that quercetin improved neuronal survival by preventing H2O2-induced p53 and Bcl-2 down-regulation and modulated Akt and ERK1/2 signalling pathways. For the first time, AFM was employed to evaluate morphologically (roughness, height, Feret dimension) and nanomechanical (elasticity) properties in H2O2-induced neuronal damage. The AFM analysis revealed that quercetin suppressed H2O2-provoked changes in cell membrane elasticity and morphological properties, thus confirming its neuroprotective activity. The obtained results indicate the potential of AFM-measured parameters as a biophysical markers of oxidative stress-induced neurodegeneration. In general, our study suggests that AFM can be used as a highly valuable tool in other biomedical applications aimed at screening and monitoring of drug-induced effects at cellular level.
doi_str_mv 10.1371/journal.pone.0200119
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2118218800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557679590</galeid><doaj_id>oai_doaj_org_article_968327205a154f45826a08af16ba4802</doaj_id><sourcerecordid>A557679590</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-bb8e4c35f1da7e31646012343227983005cb0daa0c67f3bae5475490d20b14923</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpeFN0BgCQnBRYsPiRNzgVStOFRasRKnW8txJq1LahfbKdsH4j1xttlVi_YC-SL25PtnxuOZLHtK8JSwkrxZud5b1U03zsIUU4wJEfeyUyIYnXCK2f2D_Un2KIQVxgWrOH-YnTCcluDFafZnFt3aaNQ6rwGlnXdBu80OediC6gKy8BvVxm2Wu2C06tBa-Z_gwyBAa2dNdN7YBQp9raHr-k55pJfKLiAgY5G7Mo2KZgvpsOr97i36DL13G-8i6Gs7tG3aBeRa9KuHlERMMhVRXAKyyqZsVAePswdtSgaejN-z7PuH99_OP00uLj_Oz2cXE80FjZO6riDXrGhJo0pghOccE8pyRmkpKpbur2vcKIU1L1tWKyjyssgFbiiuSS4oO8ue7_1uOhfkWOEgKSEVJVWFcSLme6JxaiU33qR67KRTRl4bnF9I5aPRHUjBK0ZLigtFirzNi4pyhSvVEl6rvMJDtHdjtL5eQ6PBRq-6I6fHf6xZyoXbSk5KQUSeHLwaHXiXiheiXJswPIOy4Pp93gwLxodYL_5B777dSC1S0aWxrUtx9eBUzoqi5KUoxEBN76DSaiA1UGrH1iT7keD1kSAxEa7iQvUhyPnXL__PXv44Zl8esMvUr3EZXNdH42w4BvM9OLR38NDeFplgOUzTTTXkME1ynKYke3b4QLeim_FhfwG2zRym</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2118218800</pqid></control><display><type>article</type><title>Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>PMC (PubMed Central)</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Free Full-Text Journals in Chemistry</source><creator>Jazvinscak Jembrek, Maja ; Vlainic, Josipa ; Cadez, Vida ; Segota, Suzana</creator><creatorcontrib>Jazvinscak Jembrek, Maja ; Vlainic, Josipa ; Cadez, Vida ; Segota, Suzana</creatorcontrib><description>Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cellular effects of free radicals and evaluation of the efficacy of drug treatment. Here, an interdisciplinary approach using atomic force microscopy (AFM) and cellular and biological molecular methods were used to investigate oxidative damage in P19 neurons and to reveal the underlying mechanism of protective action of quercetin. Biological methods demonstrated the oxidative damage of P19 neurons and showed that quercetin improved neuronal survival by preventing H2O2-induced p53 and Bcl-2 down-regulation and modulated Akt and ERK1/2 signalling pathways. For the first time, AFM was employed to evaluate morphologically (roughness, height, Feret dimension) and nanomechanical (elasticity) properties in H2O2-induced neuronal damage. The AFM analysis revealed that quercetin suppressed H2O2-provoked changes in cell membrane elasticity and morphological properties, thus confirming its neuroprotective activity. The obtained results indicate the potential of AFM-measured parameters as a biophysical markers of oxidative stress-induced neurodegeneration. In general, our study suggests that AFM can be used as a highly valuable tool in other biomedical applications aimed at screening and monitoring of drug-induced effects at cellular level.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0200119</identifier><identifier>PMID: 30303965</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>AKT protein ; Alzheimer's disease ; Alzheimers disease ; Analysis ; Antioxidants ; Apoptosis ; Atomic force microscopy ; Bcl-2 protein ; Bioindicators ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Biomedical materials ; Cell membranes ; Cell survival ; Damage ; Diagnosis ; Elasticity ; Extracellular signal-regulated kinase ; Free radicals ; Gene expression ; Hydrogen peroxide ; Kinases ; Membrane elasticity ; Microscopy ; Molecular biology ; Monitoring ; Morphology ; Neurodegeneration ; Neurodegenerative diseases ; Neurological diseases ; Neurons ; Neuroprotection ; Oxidative stress ; p53 Protein ; Physical chemistry ; Physiology ; Proteins ; Quercetin ; Research and Analysis Methods ; Signal transduction ; Topography ; Transcription factors</subject><ispartof>PloS one, 2018-10, Vol.13 (10), p.e0200119-e0200119</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Jazvinšćak Jembrek et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Jazvinšćak Jembrek et al 2018 Jazvinšćak Jembrek et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-bb8e4c35f1da7e31646012343227983005cb0daa0c67f3bae5475490d20b14923</citedby><cites>FETCH-LOGICAL-c692t-bb8e4c35f1da7e31646012343227983005cb0daa0c67f3bae5475490d20b14923</cites><orcidid>0000-0001-6416-3835</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179194/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6179194/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30303965$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jazvinscak Jembrek, Maja</creatorcontrib><creatorcontrib>Vlainic, Josipa</creatorcontrib><creatorcontrib>Cadez, Vida</creatorcontrib><creatorcontrib>Segota, Suzana</creatorcontrib><title>Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cellular effects of free radicals and evaluation of the efficacy of drug treatment. Here, an interdisciplinary approach using atomic force microscopy (AFM) and cellular and biological molecular methods were used to investigate oxidative damage in P19 neurons and to reveal the underlying mechanism of protective action of quercetin. Biological methods demonstrated the oxidative damage of P19 neurons and showed that quercetin improved neuronal survival by preventing H2O2-induced p53 and Bcl-2 down-regulation and modulated Akt and ERK1/2 signalling pathways. For the first time, AFM was employed to evaluate morphologically (roughness, height, Feret dimension) and nanomechanical (elasticity) properties in H2O2-induced neuronal damage. The AFM analysis revealed that quercetin suppressed H2O2-provoked changes in cell membrane elasticity and morphological properties, thus confirming its neuroprotective activity. The obtained results indicate the potential of AFM-measured parameters as a biophysical markers of oxidative stress-induced neurodegeneration. In general, our study suggests that AFM can be used as a highly valuable tool in other biomedical applications aimed at screening and monitoring of drug-induced effects at cellular level.</description><subject>AKT protein</subject><subject>Alzheimer's disease</subject><subject>Alzheimers disease</subject><subject>Analysis</subject><subject>Antioxidants</subject><subject>Apoptosis</subject><subject>Atomic force microscopy</subject><subject>Bcl-2 protein</subject><subject>Bioindicators</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomedical materials</subject><subject>Cell membranes</subject><subject>Cell survival</subject><subject>Damage</subject><subject>Diagnosis</subject><subject>Elasticity</subject><subject>Extracellular signal-regulated kinase</subject><subject>Free radicals</subject><subject>Gene expression</subject><subject>Hydrogen peroxide</subject><subject>Kinases</subject><subject>Membrane elasticity</subject><subject>Microscopy</subject><subject>Molecular biology</subject><subject>Monitoring</subject><subject>Morphology</subject><subject>Neurodegeneration</subject><subject>Neurodegenerative diseases</subject><subject>Neurological diseases</subject><subject>Neurons</subject><subject>Neuroprotection</subject><subject>Oxidative stress</subject><subject>p53 Protein</subject><subject>Physical chemistry</subject><subject>Physiology</subject><subject>Proteins</subject><subject>Quercetin</subject><subject>Research and Analysis Methods</subject><subject>Signal transduction</subject><subject>Topography</subject><subject>Transcription factors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpeFN0BgCQnBRYsPiRNzgVStOFRasRKnW8txJq1LahfbKdsH4j1xttlVi_YC-SL25PtnxuOZLHtK8JSwkrxZud5b1U03zsIUU4wJEfeyUyIYnXCK2f2D_Un2KIQVxgWrOH-YnTCcluDFafZnFt3aaNQ6rwGlnXdBu80OediC6gKy8BvVxm2Wu2C06tBa-Z_gwyBAa2dNdN7YBQp9raHr-k55pJfKLiAgY5G7Mo2KZgvpsOr97i36DL13G-8i6Gs7tG3aBeRa9KuHlERMMhVRXAKyyqZsVAePswdtSgaejN-z7PuH99_OP00uLj_Oz2cXE80FjZO6riDXrGhJo0pghOccE8pyRmkpKpbur2vcKIU1L1tWKyjyssgFbiiuSS4oO8ue7_1uOhfkWOEgKSEVJVWFcSLme6JxaiU33qR67KRTRl4bnF9I5aPRHUjBK0ZLigtFirzNi4pyhSvVEl6rvMJDtHdjtL5eQ6PBRq-6I6fHf6xZyoXbSk5KQUSeHLwaHXiXiheiXJswPIOy4Pp93gwLxodYL_5B777dSC1S0aWxrUtx9eBUzoqi5KUoxEBN76DSaiA1UGrH1iT7keD1kSAxEa7iQvUhyPnXL__PXv44Zl8esMvUr3EZXNdH42w4BvM9OLR38NDeFplgOUzTTTXkME1ynKYke3b4QLeim_FhfwG2zRym</recordid><startdate>20181010</startdate><enddate>20181010</enddate><creator>Jazvinscak Jembrek, Maja</creator><creator>Vlainic, Josipa</creator><creator>Cadez, Vida</creator><creator>Segota, Suzana</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6416-3835</orcidid></search><sort><creationdate>20181010</creationdate><title>Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale</title><author>Jazvinscak Jembrek, Maja ; Vlainic, Josipa ; Cadez, Vida ; Segota, Suzana</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-bb8e4c35f1da7e31646012343227983005cb0daa0c67f3bae5475490d20b14923</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>AKT protein</topic><topic>Alzheimer's disease</topic><topic>Alzheimers disease</topic><topic>Analysis</topic><topic>Antioxidants</topic><topic>Apoptosis</topic><topic>Atomic force microscopy</topic><topic>Bcl-2 protein</topic><topic>Bioindicators</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomedical materials</topic><topic>Cell membranes</topic><topic>Cell survival</topic><topic>Damage</topic><topic>Diagnosis</topic><topic>Elasticity</topic><topic>Extracellular signal-regulated kinase</topic><topic>Free radicals</topic><topic>Gene expression</topic><topic>Hydrogen peroxide</topic><topic>Kinases</topic><topic>Membrane elasticity</topic><topic>Microscopy</topic><topic>Molecular biology</topic><topic>Monitoring</topic><topic>Morphology</topic><topic>Neurodegeneration</topic><topic>Neurodegenerative diseases</topic><topic>Neurological diseases</topic><topic>Neurons</topic><topic>Neuroprotection</topic><topic>Oxidative stress</topic><topic>p53 Protein</topic><topic>Physical chemistry</topic><topic>Physiology</topic><topic>Proteins</topic><topic>Quercetin</topic><topic>Research and Analysis Methods</topic><topic>Signal transduction</topic><topic>Topography</topic><topic>Transcription factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jazvinscak Jembrek, Maja</creatorcontrib><creatorcontrib>Vlainic, Josipa</creatorcontrib><creatorcontrib>Cadez, Vida</creatorcontrib><creatorcontrib>Segota, Suzana</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints in Context (Gale)</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jazvinscak Jembrek, Maja</au><au>Vlainic, Josipa</au><au>Cadez, Vida</au><au>Segota, Suzana</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-10-10</date><risdate>2018</risdate><volume>13</volume><issue>10</issue><spage>e0200119</spage><epage>e0200119</epage><pages>e0200119-e0200119</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Oxidative stress has been recognised as an important pathological mechanism underlying the development of neurodegenerative diseases. The biomarkers for assessing the degree of oxidative stress have been attracting much interest because of their potential clinical relevance in understanding the cellular effects of free radicals and evaluation of the efficacy of drug treatment. Here, an interdisciplinary approach using atomic force microscopy (AFM) and cellular and biological molecular methods were used to investigate oxidative damage in P19 neurons and to reveal the underlying mechanism of protective action of quercetin. Biological methods demonstrated the oxidative damage of P19 neurons and showed that quercetin improved neuronal survival by preventing H2O2-induced p53 and Bcl-2 down-regulation and modulated Akt and ERK1/2 signalling pathways. For the first time, AFM was employed to evaluate morphologically (roughness, height, Feret dimension) and nanomechanical (elasticity) properties in H2O2-induced neuronal damage. The AFM analysis revealed that quercetin suppressed H2O2-provoked changes in cell membrane elasticity and morphological properties, thus confirming its neuroprotective activity. The obtained results indicate the potential of AFM-measured parameters as a biophysical markers of oxidative stress-induced neurodegeneration. In general, our study suggests that AFM can be used as a highly valuable tool in other biomedical applications aimed at screening and monitoring of drug-induced effects at cellular level.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30303965</pmid><doi>10.1371/journal.pone.0200119</doi><orcidid>https://orcid.org/0000-0001-6416-3835</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-10, Vol.13 (10), p.e0200119-e0200119
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2118218800
source Public Library of Science (PLoS) Journals Open Access; PMC (PubMed Central); DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Free Full-Text Journals in Chemistry
subjects AKT protein
Alzheimer's disease
Alzheimers disease
Analysis
Antioxidants
Apoptosis
Atomic force microscopy
Bcl-2 protein
Bioindicators
Biological markers
Biology and Life Sciences
Biomarkers
Biomedical materials
Cell membranes
Cell survival
Damage
Diagnosis
Elasticity
Extracellular signal-regulated kinase
Free radicals
Gene expression
Hydrogen peroxide
Kinases
Membrane elasticity
Microscopy
Molecular biology
Monitoring
Morphology
Neurodegeneration
Neurodegenerative diseases
Neurological diseases
Neurons
Neuroprotection
Oxidative stress
p53 Protein
Physical chemistry
Physiology
Proteins
Quercetin
Research and Analysis Methods
Signal transduction
Topography
Transcription factors
title Atomic force microscopy reveals new biophysical markers for monitoring subcellular changes in oxidative injury: Neuroprotective effects of quercetin at the nanoscale
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T06%3A23%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Atomic%20force%20microscopy%20reveals%20new%20biophysical%20markers%20for%20monitoring%20subcellular%20changes%20in%20oxidative%20injury:%20Neuroprotective%20effects%20of%20quercetin%20at%20the%20nanoscale&rft.jtitle=PloS%20one&rft.au=Jazvinscak%20Jembrek,%20Maja&rft.date=2018-10-10&rft.volume=13&rft.issue=10&rft.spage=e0200119&rft.epage=e0200119&rft.pages=e0200119-e0200119&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0200119&rft_dat=%3Cgale_plos_%3EA557679590%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2118218800&rft_id=info:pmid/30303965&rft_galeid=A557679590&rft_doaj_id=oai_doaj_org_article_968327205a154f45826a08af16ba4802&rfr_iscdi=true