Non-rigid point cloud registration based lung motion estimation using tangent-plane distance

Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lu...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-09, Vol.13 (9), p.e0204492-e0204492
Hauptverfasser: Rao, Fan, Li, Wen-Long, Yin, Zhou-Ping
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0204492
container_issue 9
container_start_page e0204492
container_title PloS one
container_volume 13
creator Rao, Fan
Li, Wen-Long
Yin, Zhou-Ping
description Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.
doi_str_mv 10.1371/journal.pone.0204492
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2112602570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557752199</galeid><doaj_id>oai_doaj_org_article_8d731d4f6d9244c3862b47e14cc9397f</doaj_id><sourcerecordid>A557752199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y1aW6EZfFjYHHBryshpEnayZBJxiSV3X9vZqa7TGUvpBcpJ895k_PmnKJ4DsECYgrfrf0YnLCLrXd6ARAghKEHxSlkGFUNAvjh0f9J8STGNQA1bpvmcXGCAaqbFoPT4tcX76pgBqPKrTculdL6UZVBDyamIJLxruxE1Kq0oxvKjd9HdExmc9gco8nxJNygXaq2VjhdqpwrnNRPi0e9sFE_m9az4sfHD98vPleXV5-WF-eXlWwYShUDSNS4Vh1qFewErmknO4waCBCCUmglMNa0ZajvWUY6giXEWje010RSiPFZ8fKgu7U-8smYyBGEqMmVUpCJ5YFQXqz5NuTbhxvuheH7gA8DFyEZaTVvFcVQkb5RDBEis2OoI1RDIiXDjPZZ6_102thttJK57iDsTHS-48yKD_4Pb2BNW1pngTeTQPC_x-wl35gotd1558f9vXP1hCCa0Vf_oPdXN1GDyAUY1_t8rtyJ8vO6prRGkLFMLe6h8qf0xsjcRb3J8VnC21lCZpK-ToMYY-TLb1__n736OWdfH7ErLWxaRW_HXT_FOUgOoAw-xqD7O5Mh4LshuHWD74aAT0OQ014cP9Bd0m3X47_YfQIH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112602570</pqid></control><display><type>article</type><title>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rao, Fan ; Li, Wen-Long ; Yin, Zhou-Ping</creator><contributor>Zhang, Qinghui</contributor><creatorcontrib>Rao, Fan ; Li, Wen-Long ; Yin, Zhou-Ping ; Zhang, Qinghui</creatorcontrib><description>Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204492</identifier><identifier>PMID: 30256830</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affine transformations ; Algorithms ; Biology and Life Sciences ; Data processing ; Deformation ; Health aspects ; Laboratories ; Lung ; Lungs ; Manufacturing ; Medical imaging ; Medical imaging equipment ; Medical research ; Medicine and Health Sciences ; Motion simulation ; Objective function ; Optimization ; Physical Sciences ; Radiation therapy ; Registration ; Research and Analysis Methods ; Respiration ; Sliding ; Three dimensional models ; Transformation ; Transformations (mathematics)</subject><ispartof>PloS one, 2018-09, Vol.13 (9), p.e0204492-e0204492</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Rao et al 2018 Rao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</citedby><cites>FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</cites><orcidid>0000-0002-8949-0362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157875/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157875/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Qinghui</contributor><creatorcontrib>Rao, Fan</creatorcontrib><creatorcontrib>Li, Wen-Long</creatorcontrib><creatorcontrib>Yin, Zhou-Ping</creatorcontrib><title>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.</description><subject>Affine transformations</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Health aspects</subject><subject>Laboratories</subject><subject>Lung</subject><subject>Lungs</subject><subject>Manufacturing</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Motion simulation</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Radiation therapy</subject><subject>Registration</subject><subject>Research and Analysis Methods</subject><subject>Respiration</subject><subject>Sliding</subject><subject>Three dimensional models</subject><subject>Transformation</subject><subject>Transformations (mathematics)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y1aW6EZfFjYHHBryshpEnayZBJxiSV3X9vZqa7TGUvpBcpJ895k_PmnKJ4DsECYgrfrf0YnLCLrXd6ARAghKEHxSlkGFUNAvjh0f9J8STGNQA1bpvmcXGCAaqbFoPT4tcX76pgBqPKrTculdL6UZVBDyamIJLxruxE1Kq0oxvKjd9HdExmc9gco8nxJNygXaq2VjhdqpwrnNRPi0e9sFE_m9az4sfHD98vPleXV5-WF-eXlWwYShUDSNS4Vh1qFewErmknO4waCBCCUmglMNa0ZajvWUY6giXEWje010RSiPFZ8fKgu7U-8smYyBGEqMmVUpCJ5YFQXqz5NuTbhxvuheH7gA8DFyEZaTVvFcVQkb5RDBEis2OoI1RDIiXDjPZZ6_102thttJK57iDsTHS-48yKD_4Pb2BNW1pngTeTQPC_x-wl35gotd1558f9vXP1hCCa0Vf_oPdXN1GDyAUY1_t8rtyJ8vO6prRGkLFMLe6h8qf0xsjcRb3J8VnC21lCZpK-ToMYY-TLb1__n736OWdfH7ErLWxaRW_HXT_FOUgOoAw-xqD7O5Mh4LshuHWD74aAT0OQ014cP9Bd0m3X47_YfQIH</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Rao, Fan</creator><creator>Li, Wen-Long</creator><creator>Yin, Zhou-Ping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8949-0362</orcidid></search><sort><creationdate>20180926</creationdate><title>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</title><author>Rao, Fan ; Li, Wen-Long ; Yin, Zhou-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affine transformations</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Health aspects</topic><topic>Laboratories</topic><topic>Lung</topic><topic>Lungs</topic><topic>Manufacturing</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Motion simulation</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Radiation therapy</topic><topic>Registration</topic><topic>Research and Analysis Methods</topic><topic>Respiration</topic><topic>Sliding</topic><topic>Three dimensional models</topic><topic>Transformation</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Fan</creatorcontrib><creatorcontrib>Li, Wen-Long</creatorcontrib><creatorcontrib>Yin, Zhou-Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Fan</au><au>Li, Wen-Long</au><au>Yin, Zhou-Ping</au><au>Zhang, Qinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-09-26</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>e0204492</spage><epage>e0204492</epage><pages>e0204492-e0204492</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30256830</pmid><doi>10.1371/journal.pone.0204492</doi><tpages>e0204492</tpages><orcidid>https://orcid.org/0000-0002-8949-0362</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-09, Vol.13 (9), p.e0204492-e0204492
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2112602570
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Affine transformations
Algorithms
Biology and Life Sciences
Data processing
Deformation
Health aspects
Laboratories
Lung
Lungs
Manufacturing
Medical imaging
Medical imaging equipment
Medical research
Medicine and Health Sciences
Motion simulation
Objective function
Optimization
Physical Sciences
Radiation therapy
Registration
Research and Analysis Methods
Respiration
Sliding
Three dimensional models
Transformation
Transformations (mathematics)
title Non-rigid point cloud registration based lung motion estimation using tangent-plane distance
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-rigid%20point%20cloud%20registration%20based%20lung%20motion%20estimation%20using%20tangent-plane%20distance&rft.jtitle=PloS%20one&rft.au=Rao,%20Fan&rft.date=2018-09-26&rft.volume=13&rft.issue=9&rft.spage=e0204492&rft.epage=e0204492&rft.pages=e0204492-e0204492&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204492&rft_dat=%3Cgale_plos_%3EA557752199%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112602570&rft_id=info:pmid/30256830&rft_galeid=A557752199&rft_doaj_id=oai_doaj_org_article_8d731d4f6d9244c3862b47e14cc9397f&rfr_iscdi=true