Non-rigid point cloud registration based lung motion estimation using tangent-plane distance
Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lu...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-09, Vol.13 (9), p.e0204492-e0204492 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0204492 |
---|---|
container_issue | 9 |
container_start_page | e0204492 |
container_title | PloS one |
container_volume | 13 |
creator | Rao, Fan Li, Wen-Long Yin, Zhou-Ping |
description | Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase. |
doi_str_mv | 10.1371/journal.pone.0204492 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2112602570</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557752199</galeid><doaj_id>oai_doaj_org_article_8d731d4f6d9244c3862b47e14cc9397f</doaj_id><sourcerecordid>A557752199</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y1aW6EZfFjYHHBryshpEnayZBJxiSV3X9vZqa7TGUvpBcpJ895k_PmnKJ4DsECYgrfrf0YnLCLrXd6ARAghKEHxSlkGFUNAvjh0f9J8STGNQA1bpvmcXGCAaqbFoPT4tcX76pgBqPKrTculdL6UZVBDyamIJLxruxE1Kq0oxvKjd9HdExmc9gco8nxJNygXaq2VjhdqpwrnNRPi0e9sFE_m9az4sfHD98vPleXV5-WF-eXlWwYShUDSNS4Vh1qFewErmknO4waCBCCUmglMNa0ZajvWUY6giXEWje010RSiPFZ8fKgu7U-8smYyBGEqMmVUpCJ5YFQXqz5NuTbhxvuheH7gA8DFyEZaTVvFcVQkb5RDBEis2OoI1RDIiXDjPZZ6_102thttJK57iDsTHS-48yKD_4Pb2BNW1pngTeTQPC_x-wl35gotd1558f9vXP1hCCa0Vf_oPdXN1GDyAUY1_t8rtyJ8vO6prRGkLFMLe6h8qf0xsjcRb3J8VnC21lCZpK-ToMYY-TLb1__n736OWdfH7ErLWxaRW_HXT_FOUgOoAw-xqD7O5Mh4LshuHWD74aAT0OQ014cP9Bd0m3X47_YfQIH</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2112602570</pqid></control><display><type>article</type><title>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Rao, Fan ; Li, Wen-Long ; Yin, Zhou-Ping</creator><contributor>Zhang, Qinghui</contributor><creatorcontrib>Rao, Fan ; Li, Wen-Long ; Yin, Zhou-Ping ; Zhang, Qinghui</creatorcontrib><description>Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0204492</identifier><identifier>PMID: 30256830</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affine transformations ; Algorithms ; Biology and Life Sciences ; Data processing ; Deformation ; Health aspects ; Laboratories ; Lung ; Lungs ; Manufacturing ; Medical imaging ; Medical imaging equipment ; Medical research ; Medicine and Health Sciences ; Motion simulation ; Objective function ; Optimization ; Physical Sciences ; Radiation therapy ; Registration ; Research and Analysis Methods ; Respiration ; Sliding ; Three dimensional models ; Transformation ; Transformations (mathematics)</subject><ispartof>PloS one, 2018-09, Vol.13 (9), p.e0204492-e0204492</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Rao et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Rao et al 2018 Rao et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</citedby><cites>FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</cites><orcidid>0000-0002-8949-0362</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157875/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6157875/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30256830$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Qinghui</contributor><creatorcontrib>Rao, Fan</creatorcontrib><creatorcontrib>Li, Wen-Long</creatorcontrib><creatorcontrib>Yin, Zhou-Ping</creatorcontrib><title>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.</description><subject>Affine transformations</subject><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Data processing</subject><subject>Deformation</subject><subject>Health aspects</subject><subject>Laboratories</subject><subject>Lung</subject><subject>Lungs</subject><subject>Manufacturing</subject><subject>Medical imaging</subject><subject>Medical imaging equipment</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Motion simulation</subject><subject>Objective function</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Radiation therapy</subject><subject>Registration</subject><subject>Research and Analysis Methods</subject><subject>Respiration</subject><subject>Sliding</subject><subject>Three dimensional models</subject><subject>Transformation</subject><subject>Transformations (mathematics)</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLguhFx3y1aW6EZfFjYHHBryshpEnayZBJxiSV3X9vZqa7TGUvpBcpJ895k_PmnKJ4DsECYgrfrf0YnLCLrXd6ARAghKEHxSlkGFUNAvjh0f9J8STGNQA1bpvmcXGCAaqbFoPT4tcX76pgBqPKrTculdL6UZVBDyamIJLxruxE1Kq0oxvKjd9HdExmc9gco8nxJNygXaq2VjhdqpwrnNRPi0e9sFE_m9az4sfHD98vPleXV5-WF-eXlWwYShUDSNS4Vh1qFewErmknO4waCBCCUmglMNa0ZajvWUY6giXEWje010RSiPFZ8fKgu7U-8smYyBGEqMmVUpCJ5YFQXqz5NuTbhxvuheH7gA8DFyEZaTVvFcVQkb5RDBEis2OoI1RDIiXDjPZZ6_102thttJK57iDsTHS-48yKD_4Pb2BNW1pngTeTQPC_x-wl35gotd1558f9vXP1hCCa0Vf_oPdXN1GDyAUY1_t8rtyJ8vO6prRGkLFMLe6h8qf0xsjcRb3J8VnC21lCZpK-ToMYY-TLb1__n736OWdfH7ErLWxaRW_HXT_FOUgOoAw-xqD7O5Mh4LshuHWD74aAT0OQ014cP9Bd0m3X47_YfQIH</recordid><startdate>20180926</startdate><enddate>20180926</enddate><creator>Rao, Fan</creator><creator>Li, Wen-Long</creator><creator>Yin, Zhou-Ping</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8949-0362</orcidid></search><sort><creationdate>20180926</creationdate><title>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</title><author>Rao, Fan ; Li, Wen-Long ; Yin, Zhou-Ping</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-902a535db28d1ba357bcb32610221caeda33e7892ff928db43c13ee67fe4c7133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Affine transformations</topic><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Data processing</topic><topic>Deformation</topic><topic>Health aspects</topic><topic>Laboratories</topic><topic>Lung</topic><topic>Lungs</topic><topic>Manufacturing</topic><topic>Medical imaging</topic><topic>Medical imaging equipment</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Motion simulation</topic><topic>Objective function</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Radiation therapy</topic><topic>Registration</topic><topic>Research and Analysis Methods</topic><topic>Respiration</topic><topic>Sliding</topic><topic>Three dimensional models</topic><topic>Transformation</topic><topic>Transformations (mathematics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rao, Fan</creatorcontrib><creatorcontrib>Li, Wen-Long</creatorcontrib><creatorcontrib>Yin, Zhou-Ping</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rao, Fan</au><au>Li, Wen-Long</au><au>Yin, Zhou-Ping</au><au>Zhang, Qinghui</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Non-rigid point cloud registration based lung motion estimation using tangent-plane distance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-09-26</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>e0204492</spage><epage>e0204492</epage><pages>e0204492-e0204492</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Accurate estimation of motion field in respiration-correlated 4DCT images, is a precondition for the analysis of patient-specific breathing dynamics and subsequent image-supported treatment planning. However, the lung motion estimation often suffers from the sliding motion. In this paper, a novel lung motion method based on the non-rigid registration of point clouds is proposed, and the tangent-plane distance is used to represent the distance term, which describes the difference between two point clouds. Local affine transformation model is used to express the non-rigid deformation of the lung motion. The final objective function is expressed in the Frobenius norm formation, and matrix optimization scheme is carried out to find out the optimal transformation parameters that minimize the objective function. A key advantage of our proposed method is that it alleviates the requirement that the source point cloud and the reference point cloud should be in one-to-one corresponding relationship, and the requirement is difficult to be satisfied in practical application. Furthermore, the proposed method takes the sliding motion of the lung into consideration and improves the registration accuracy by reducing the constraint of the motion along the tangent direction. Non-rigid registration experiments are carried out to validate the performance of the proposed method using popi-model data. The results demonstrate that the proposed method outperforms the traditional method with about 20% accuracy increase.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30256830</pmid><doi>10.1371/journal.pone.0204492</doi><tpages>e0204492</tpages><orcidid>https://orcid.org/0000-0002-8949-0362</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-09, Vol.13 (9), p.e0204492-e0204492 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2112602570 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Affine transformations Algorithms Biology and Life Sciences Data processing Deformation Health aspects Laboratories Lung Lungs Manufacturing Medical imaging Medical imaging equipment Medical research Medicine and Health Sciences Motion simulation Objective function Optimization Physical Sciences Radiation therapy Registration Research and Analysis Methods Respiration Sliding Three dimensional models Transformation Transformations (mathematics) |
title | Non-rigid point cloud registration based lung motion estimation using tangent-plane distance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T05%3A59%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Non-rigid%20point%20cloud%20registration%20based%20lung%20motion%20estimation%20using%20tangent-plane%20distance&rft.jtitle=PloS%20one&rft.au=Rao,%20Fan&rft.date=2018-09-26&rft.volume=13&rft.issue=9&rft.spage=e0204492&rft.epage=e0204492&rft.pages=e0204492-e0204492&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0204492&rft_dat=%3Cgale_plos_%3EA557752199%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2112602570&rft_id=info:pmid/30256830&rft_galeid=A557752199&rft_doaj_id=oai_doaj_org_article_8d731d4f6d9244c3862b47e14cc9397f&rfr_iscdi=true |