Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum)

Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indication that it may also become a serious disease of durum wheat (T. turgidum L. var. durum). Therefore, we invest...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-09, Vol.13 (9), p.e0203283-e0203283
Hauptverfasser: Lin, Xue, N'Diaye, Amidou, Walkowiak, Sean, Nilsen, Kirby T, Cory, Aron T, Haile, Jemanesh, Kutcher, Hadley R, Ammar, Karim, Loladze, Alexander, Huerta-Espino, Julio, Clarke, John M, Ruan, Yuefeng, Knox, Ron, Fobert, Pierre, Sharpe, Andrew G, Pozniak, Curtis J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0203283
container_issue 9
container_start_page e0203283
container_title PloS one
container_volume 13
creator Lin, Xue
N'Diaye, Amidou
Walkowiak, Sean
Nilsen, Kirby T
Cory, Aron T
Haile, Jemanesh
Kutcher, Hadley R
Ammar, Karim
Loladze, Alexander
Huerta-Espino, Julio
Clarke, John M
Ruan, Yuefeng
Knox, Ron
Fobert, Pierre
Sharpe, Andrew G
Pozniak, Curtis J
description Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indication that it may also become a serious disease of durum wheat (T. turgidum L. var. durum). Therefore, we investigated the genetic architecture underlying resistance to stripe rust in adapted durum wheat germplasm. Wheat infection assays were conducted under controlled conditions in Canada and under field conditions in Mexico. Disease assessments were performed on a population of 155 doubled haploid (DH) lines derived from the cross of Kofa (susceptible) and W9262-260D3 (moderately resistant) and on a breeding panel that consisted of 92 diverse cultivars and breeding lines. Both populations were genotyped using the 90K single-nucleotide polymorphism (SNP) iSelect assay. In the DH population, QTL for stripe rust resistance were identified on chromosome 7B (LOD 6.87-11.47) and chromosome 5B (LOD 3.88-9.17). The QTL for stripe rust resistance on chromosome 7B was supported in the breeding panel. Both QTL were anchored to the genome sequence of wild emmer wheat, which identified gene candidates involved in disease resistance. Exome capture sequencing identified variation in the candidate genes between Kofa and W9262-260D3. These genetic insights will be useful in durum breeding to enhance resistance to stripe rust.
doi_str_mv 10.1371/journal.pone.0203283
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2110053805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557757975</galeid><doaj_id>oai_doaj_org_article_85ac60e03c424418849840a4e8810afa</doaj_id><sourcerecordid>A557757975</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-cdac1963ae67728ef7fec6987ac133d10a8acbd5ee57586a0f3916cca3c360543</originalsourceid><addsrcrecordid>eNqNk99r2zAQx83YWLts_8HYDIPRPsSTLP-QXwaldF0gUNi6PU5c5XOi4FiZJHftf79L4pZ49GEY45P0ue_pzndR9JazhIuSf1rZ3nXQJhvbYcJSJlIpnkXHvBLptKDl8wP7KHrl_YqxXMiieBkdCZYKzrLqOPp1iR0Go2MgrXtvfGyb2CEZATqNcbCxD85sMHa9D7Hp4rp3_Tr-s0QI8cm1M-RM69C7hanJmCfxLbhkj52-jl400Hp8M3wn0Y8vF9fnX6fzq8vZ-dl8qosqDVNdg-ZVIQCLskwlNmWDdCJL2hai5gwk6Js6R8zLXBbAGlHxQmsQWhQsz8Qker_X3bTWq6E0XqWc75KmdxLN9kRtYaU2zqzB3SsLRu02rFsocJRLi0rmoAuGTOgszTIuZVbJjEGGUtJNGiCtz0O0_maNtcYuOGhHouOTzizVwt6qgmc5ZUACJ4OAs7979EGtjdfYttCh7Xf3zqgweS4I_fAP-nR2A7UASsB0jaW4eiuqzihimZfVLmzyBEVPjWujqY8aQ_sjh9ORAzEB78ICeu_V7Pu3_2evfo7ZjwcstVIblt62fTC282Mw24PaWe8dNo9F5kxtx-ChGmo7BmoYA3J7d_iDHp0e-l78BRDaAZ0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2110053805</pqid></control><display><type>article</type><title>Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum)</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Lin, Xue ; N'Diaye, Amidou ; Walkowiak, Sean ; Nilsen, Kirby T ; Cory, Aron T ; Haile, Jemanesh ; Kutcher, Hadley R ; Ammar, Karim ; Loladze, Alexander ; Huerta-Espino, Julio ; Clarke, John M ; Ruan, Yuefeng ; Knox, Ron ; Fobert, Pierre ; Sharpe, Andrew G ; Pozniak, Curtis J</creator><contributor>Zhang, Aimin</contributor><creatorcontrib>Lin, Xue ; N'Diaye, Amidou ; Walkowiak, Sean ; Nilsen, Kirby T ; Cory, Aron T ; Haile, Jemanesh ; Kutcher, Hadley R ; Ammar, Karim ; Loladze, Alexander ; Huerta-Espino, Julio ; Clarke, John M ; Ruan, Yuefeng ; Knox, Ron ; Fobert, Pierre ; Sharpe, Andrew G ; Pozniak, Curtis J ; Zhang, Aimin</creatorcontrib><description>Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indication that it may also become a serious disease of durum wheat (T. turgidum L. var. durum). Therefore, we investigated the genetic architecture underlying resistance to stripe rust in adapted durum wheat germplasm. Wheat infection assays were conducted under controlled conditions in Canada and under field conditions in Mexico. Disease assessments were performed on a population of 155 doubled haploid (DH) lines derived from the cross of Kofa (susceptible) and W9262-260D3 (moderately resistant) and on a breeding panel that consisted of 92 diverse cultivars and breeding lines. Both populations were genotyped using the 90K single-nucleotide polymorphism (SNP) iSelect assay. In the DH population, QTL for stripe rust resistance were identified on chromosome 7B (LOD 6.87-11.47) and chromosome 5B (LOD 3.88-9.17). The QTL for stripe rust resistance on chromosome 7B was supported in the breeding panel. Both QTL were anchored to the genome sequence of wild emmer wheat, which identified gene candidates involved in disease resistance. Exome capture sequencing identified variation in the candidate genes between Kofa and W9262-260D3. These genetic insights will be useful in durum breeding to enhance resistance to stripe rust.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0203283</identifier><identifier>PMID: 30231049</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Bread ; Breeding ; Chromosome 7 ; Controlled conditions ; Corn ; Crop diseases ; Cultivars ; Disease control ; Disease resistance ; Durum wheat ; Food ; Fungi ; Gene sequencing ; Genes ; Genetic analysis ; Genetic aspects ; Genetic variation ; Genomes ; Genotype &amp; phenotype ; Germplasm ; Identification ; Nucleotide sequence ; Pathogens ; Plant fungal diseases ; Plant resistance ; Plant sciences ; Polymorphism ; Quantitative trait loci ; R&amp;D ; Research &amp; development ; Research and Analysis Methods ; Risk factors ; Single nucleotide polymorphisms ; Single-nucleotide polymorphism ; Stripe rust ; Triticum aestivum ; Triticum durum ; Triticum turgidum ; Wheat</subject><ispartof>PloS one, 2018-09, Vol.13 (9), p.e0203283-e0203283</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Lin et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Lin et al 2018 Lin et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-cdac1963ae67728ef7fec6987ac133d10a8acbd5ee57586a0f3916cca3c360543</citedby><cites>FETCH-LOGICAL-c692t-cdac1963ae67728ef7fec6987ac133d10a8acbd5ee57586a0f3916cca3c360543</cites><orcidid>0000-0003-1815-5097 ; 0000-0002-7536-3856</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145575/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6145575/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,2104,2930,23873,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30231049$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Zhang, Aimin</contributor><creatorcontrib>Lin, Xue</creatorcontrib><creatorcontrib>N'Diaye, Amidou</creatorcontrib><creatorcontrib>Walkowiak, Sean</creatorcontrib><creatorcontrib>Nilsen, Kirby T</creatorcontrib><creatorcontrib>Cory, Aron T</creatorcontrib><creatorcontrib>Haile, Jemanesh</creatorcontrib><creatorcontrib>Kutcher, Hadley R</creatorcontrib><creatorcontrib>Ammar, Karim</creatorcontrib><creatorcontrib>Loladze, Alexander</creatorcontrib><creatorcontrib>Huerta-Espino, Julio</creatorcontrib><creatorcontrib>Clarke, John M</creatorcontrib><creatorcontrib>Ruan, Yuefeng</creatorcontrib><creatorcontrib>Knox, Ron</creatorcontrib><creatorcontrib>Fobert, Pierre</creatorcontrib><creatorcontrib>Sharpe, Andrew G</creatorcontrib><creatorcontrib>Pozniak, Curtis J</creatorcontrib><title>Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum)</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indication that it may also become a serious disease of durum wheat (T. turgidum L. var. durum). Therefore, we investigated the genetic architecture underlying resistance to stripe rust in adapted durum wheat germplasm. Wheat infection assays were conducted under controlled conditions in Canada and under field conditions in Mexico. Disease assessments were performed on a population of 155 doubled haploid (DH) lines derived from the cross of Kofa (susceptible) and W9262-260D3 (moderately resistant) and on a breeding panel that consisted of 92 diverse cultivars and breeding lines. Both populations were genotyped using the 90K single-nucleotide polymorphism (SNP) iSelect assay. In the DH population, QTL for stripe rust resistance were identified on chromosome 7B (LOD 6.87-11.47) and chromosome 5B (LOD 3.88-9.17). The QTL for stripe rust resistance on chromosome 7B was supported in the breeding panel. Both QTL were anchored to the genome sequence of wild emmer wheat, which identified gene candidates involved in disease resistance. Exome capture sequencing identified variation in the candidate genes between Kofa and W9262-260D3. These genetic insights will be useful in durum breeding to enhance resistance to stripe rust.</description><subject>Biology and Life Sciences</subject><subject>Bread</subject><subject>Breeding</subject><subject>Chromosome 7</subject><subject>Controlled conditions</subject><subject>Corn</subject><subject>Crop diseases</subject><subject>Cultivars</subject><subject>Disease control</subject><subject>Disease resistance</subject><subject>Durum wheat</subject><subject>Food</subject><subject>Fungi</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic analysis</subject><subject>Genetic aspects</subject><subject>Genetic variation</subject><subject>Genomes</subject><subject>Genotype &amp; phenotype</subject><subject>Germplasm</subject><subject>Identification</subject><subject>Nucleotide sequence</subject><subject>Pathogens</subject><subject>Plant fungal diseases</subject><subject>Plant resistance</subject><subject>Plant sciences</subject><subject>Polymorphism</subject><subject>Quantitative trait loci</subject><subject>R&amp;D</subject><subject>Research &amp; development</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Single nucleotide polymorphisms</subject><subject>Single-nucleotide polymorphism</subject><subject>Stripe rust</subject><subject>Triticum aestivum</subject><subject>Triticum durum</subject><subject>Triticum turgidum</subject><subject>Wheat</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk99r2zAQx83YWLts_8HYDIPRPsSTLP-QXwaldF0gUNi6PU5c5XOi4FiZJHftf79L4pZ49GEY45P0ue_pzndR9JazhIuSf1rZ3nXQJhvbYcJSJlIpnkXHvBLptKDl8wP7KHrl_YqxXMiieBkdCZYKzrLqOPp1iR0Go2MgrXtvfGyb2CEZATqNcbCxD85sMHa9D7Hp4rp3_Tr-s0QI8cm1M-RM69C7hanJmCfxLbhkj52-jl400Hp8M3wn0Y8vF9fnX6fzq8vZ-dl8qosqDVNdg-ZVIQCLskwlNmWDdCJL2hai5gwk6Js6R8zLXBbAGlHxQmsQWhQsz8Qker_X3bTWq6E0XqWc75KmdxLN9kRtYaU2zqzB3SsLRu02rFsocJRLi0rmoAuGTOgszTIuZVbJjEGGUtJNGiCtz0O0_maNtcYuOGhHouOTzizVwt6qgmc5ZUACJ4OAs7979EGtjdfYttCh7Xf3zqgweS4I_fAP-nR2A7UASsB0jaW4eiuqzihimZfVLmzyBEVPjWujqY8aQ_sjh9ORAzEB78ICeu_V7Pu3_2evfo7ZjwcstVIblt62fTC282Mw24PaWe8dNo9F5kxtx-ChGmo7BmoYA3J7d_iDHp0e-l78BRDaAZ0</recordid><startdate>20180919</startdate><enddate>20180919</enddate><creator>Lin, Xue</creator><creator>N'Diaye, Amidou</creator><creator>Walkowiak, Sean</creator><creator>Nilsen, Kirby T</creator><creator>Cory, Aron T</creator><creator>Haile, Jemanesh</creator><creator>Kutcher, Hadley R</creator><creator>Ammar, Karim</creator><creator>Loladze, Alexander</creator><creator>Huerta-Espino, Julio</creator><creator>Clarke, John M</creator><creator>Ruan, Yuefeng</creator><creator>Knox, Ron</creator><creator>Fobert, Pierre</creator><creator>Sharpe, Andrew G</creator><creator>Pozniak, Curtis J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1815-5097</orcidid><orcidid>https://orcid.org/0000-0002-7536-3856</orcidid></search><sort><creationdate>20180919</creationdate><title>Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum)</title><author>Lin, Xue ; N'Diaye, Amidou ; Walkowiak, Sean ; Nilsen, Kirby T ; Cory, Aron T ; Haile, Jemanesh ; Kutcher, Hadley R ; Ammar, Karim ; Loladze, Alexander ; Huerta-Espino, Julio ; Clarke, John M ; Ruan, Yuefeng ; Knox, Ron ; Fobert, Pierre ; Sharpe, Andrew G ; Pozniak, Curtis J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-cdac1963ae67728ef7fec6987ac133d10a8acbd5ee57586a0f3916cca3c360543</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biology and Life Sciences</topic><topic>Bread</topic><topic>Breeding</topic><topic>Chromosome 7</topic><topic>Controlled conditions</topic><topic>Corn</topic><topic>Crop diseases</topic><topic>Cultivars</topic><topic>Disease control</topic><topic>Disease resistance</topic><topic>Durum wheat</topic><topic>Food</topic><topic>Fungi</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic analysis</topic><topic>Genetic aspects</topic><topic>Genetic variation</topic><topic>Genomes</topic><topic>Genotype &amp; phenotype</topic><topic>Germplasm</topic><topic>Identification</topic><topic>Nucleotide sequence</topic><topic>Pathogens</topic><topic>Plant fungal diseases</topic><topic>Plant resistance</topic><topic>Plant sciences</topic><topic>Polymorphism</topic><topic>Quantitative trait loci</topic><topic>R&amp;D</topic><topic>Research &amp; development</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Single nucleotide polymorphisms</topic><topic>Single-nucleotide polymorphism</topic><topic>Stripe rust</topic><topic>Triticum aestivum</topic><topic>Triticum durum</topic><topic>Triticum turgidum</topic><topic>Wheat</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lin, Xue</creatorcontrib><creatorcontrib>N'Diaye, Amidou</creatorcontrib><creatorcontrib>Walkowiak, Sean</creatorcontrib><creatorcontrib>Nilsen, Kirby T</creatorcontrib><creatorcontrib>Cory, Aron T</creatorcontrib><creatorcontrib>Haile, Jemanesh</creatorcontrib><creatorcontrib>Kutcher, Hadley R</creatorcontrib><creatorcontrib>Ammar, Karim</creatorcontrib><creatorcontrib>Loladze, Alexander</creatorcontrib><creatorcontrib>Huerta-Espino, Julio</creatorcontrib><creatorcontrib>Clarke, John M</creatorcontrib><creatorcontrib>Ruan, Yuefeng</creatorcontrib><creatorcontrib>Knox, Ron</creatorcontrib><creatorcontrib>Fobert, Pierre</creatorcontrib><creatorcontrib>Sharpe, Andrew G</creatorcontrib><creatorcontrib>Pozniak, Curtis J</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lin, Xue</au><au>N'Diaye, Amidou</au><au>Walkowiak, Sean</au><au>Nilsen, Kirby T</au><au>Cory, Aron T</au><au>Haile, Jemanesh</au><au>Kutcher, Hadley R</au><au>Ammar, Karim</au><au>Loladze, Alexander</au><au>Huerta-Espino, Julio</au><au>Clarke, John M</au><au>Ruan, Yuefeng</au><au>Knox, Ron</au><au>Fobert, Pierre</au><au>Sharpe, Andrew G</au><au>Pozniak, Curtis J</au><au>Zhang, Aimin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum)</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-09-19</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>e0203283</spage><epage>e0203283</epage><pages>e0203283-e0203283</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Stripe rust, caused by the fungal pathogen Puccinia striiformis Westend. f. sp. tritici Eriks, is an important disease of bread wheat (Triticum aestivum L.) worldwide and there is an indication that it may also become a serious disease of durum wheat (T. turgidum L. var. durum). Therefore, we investigated the genetic architecture underlying resistance to stripe rust in adapted durum wheat germplasm. Wheat infection assays were conducted under controlled conditions in Canada and under field conditions in Mexico. Disease assessments were performed on a population of 155 doubled haploid (DH) lines derived from the cross of Kofa (susceptible) and W9262-260D3 (moderately resistant) and on a breeding panel that consisted of 92 diverse cultivars and breeding lines. Both populations were genotyped using the 90K single-nucleotide polymorphism (SNP) iSelect assay. In the DH population, QTL for stripe rust resistance were identified on chromosome 7B (LOD 6.87-11.47) and chromosome 5B (LOD 3.88-9.17). The QTL for stripe rust resistance on chromosome 7B was supported in the breeding panel. Both QTL were anchored to the genome sequence of wild emmer wheat, which identified gene candidates involved in disease resistance. Exome capture sequencing identified variation in the candidate genes between Kofa and W9262-260D3. These genetic insights will be useful in durum breeding to enhance resistance to stripe rust.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30231049</pmid><doi>10.1371/journal.pone.0203283</doi><tpages>e0203283</tpages><orcidid>https://orcid.org/0000-0003-1815-5097</orcidid><orcidid>https://orcid.org/0000-0002-7536-3856</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-09, Vol.13 (9), p.e0203283-e0203283
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2110053805
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Biology and Life Sciences
Bread
Breeding
Chromosome 7
Controlled conditions
Corn
Crop diseases
Cultivars
Disease control
Disease resistance
Durum wheat
Food
Fungi
Gene sequencing
Genes
Genetic analysis
Genetic aspects
Genetic variation
Genomes
Genotype & phenotype
Germplasm
Identification
Nucleotide sequence
Pathogens
Plant fungal diseases
Plant resistance
Plant sciences
Polymorphism
Quantitative trait loci
R&D
Research & development
Research and Analysis Methods
Risk factors
Single nucleotide polymorphisms
Single-nucleotide polymorphism
Stripe rust
Triticum aestivum
Triticum durum
Triticum turgidum
Wheat
title Genetic analysis of resistance to stripe rust in durum wheat (Triticum turgidum L. var. durum)
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T07%3A05%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20analysis%20of%20resistance%20to%20stripe%20rust%20in%20durum%20wheat%20(Triticum%20turgidum%20L.%20var.%20durum)&rft.jtitle=PloS%20one&rft.au=Lin,%20Xue&rft.date=2018-09-19&rft.volume=13&rft.issue=9&rft.spage=e0203283&rft.epage=e0203283&rft.pages=e0203283-e0203283&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0203283&rft_dat=%3Cgale_plos_%3EA557757975%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2110053805&rft_id=info:pmid/30231049&rft_galeid=A557757975&rft_doaj_id=oai_doaj_org_article_85ac60e03c424418849840a4e8810afa&rfr_iscdi=true