Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors
With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persiste...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-09, Vol.13 (9), p.e0203148-e0203148 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0203148 |
---|---|
container_issue | 9 |
container_start_page | e0203148 |
container_title | PloS one |
container_volume | 13 |
creator | Mathew, Shilu Al Thani, Asmaa A Yassine, Hadi M |
description | With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persistent need for the development of broader and more effective vaccines and therapeutics. Identification of broadly neutralizing antibodies (bNAbs) that recognize relatively invariant structures on influenza haemagglutinin (HA) stem has invigorated efforts to develop universal influenza vaccines.
The current computational study is designed to identify potential flavonoid inhibitors that bind to the contact epitopes of HA stem that are targeted by broadly neutralizing antibodies (bNAb).
In this study, we utilized the three-dimensional crystallographic structure of different HA subtypes (H1, H2, H5, H3, and H7) in complex with bNAb to screen for potential broadly reactive influenza inhibitors. We performed Quantitative Structure-Activity and Relationship (QSAR) for 100 natural compounds known for their antiviral activity and performed molecular docking using AutoDock 4.2 suite. Furthermore, we conducted virtual screening of 1413 bioassay hit compounds by using virtual lab bench CLC Drug Discovery.
The results showed 18 lead flavonoids with strong binding abilities to bNAb epitopes of various HA subtypes. These 18 broadly reactive compounds exhibited significant interactions with an average of seven Hbonds, docking energy of -22.43 kcal·mol-1, and minimum interaction energy of -4.65 kcal·mol-1, with functional contact residues. Procyanidin depicted strong interactions with group 1 HAs, whereas both sorbitol and procyanidin exhibited significant interactions with group 2 HAs.
Using in silico docking analysis, we identified 18 bioactive flavonoids with potential strong binding cababilities to influenza HA-stems of various subtypes, which are the target for bNAb. The virtual screened bioassay hit compounds depicted a high number of Hbonds but low interaction and docking values compared to antiviral flavonoids. Using structure-based design and nanotechnology-based approaches, identified molecules could be modified to generate next generation anti-influenza drugs. |
doi_str_mv | 10.1371/journal.pone.0203148 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2099430590</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A557795657</galeid><doaj_id>oai_doaj_org_article_75282c93807748dcb74016a661f81be3</doaj_id><sourcerecordid>A557795657</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-6890d79d1b2a01a67c2d89e6712fefc54695411b299ff46c535286d5aa55df9d3</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnbpMmNMAzqDiws-HUb0jSZyZgm3SRdP_DHmzrdZSp7IaW0PXnOe3re5GTZUwiWsKzhm70bvOVm2Tsrl6AAJazIvewU0rJY4PR5_-j9JHsUwh4AVBKMH2YnJYAEFJCcZr_XruuHyKN2SSwPwktptd3mTuXfrPtu88Y73i5CL0X0Q5dzG_W19iPbcWNy57fcapF3zkgxGBly5XzeuygTmChtlRmk_cXz81UeouxSZKcbHZ0Pj7MHipsgn0zPs-zL-3ef1-eLi8sPm_XqYiEwLeICEwramrawKTiAHNeiaAmVuIaFkkqgClNUwbRKqVIVFqhEBcEt4hyhVtG2PMueH3R74wKbjAusAJRWJUAUJGJzIFrH96z3uuP-J3Ncs7-B1CTjPmphJKuTeCFoSUBdV6QVTV0BiDnGUBHYyDJpvZ2qDU0nW5GMSHbNROcrVu_Y1l0zDIskXSeBV5OAd1eDDJF1OghpDLfSDYf_JqRKd0Jf_IPe3d1EbXlqIO2IS3XFKMpWCNU1RRiNZZd3UOlqZadFOmVKp_gs4fUsITFR_ohbPoTANp8-_j97-XXOvjxid5KbuAvODOMZDXOwOoDCuxC8VLcmQ8DGIblxg41DwqYhSWnPjjfoNulmKso_Je4N7A</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2099430590</pqid></control><display><type>article</type><title>Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Mathew, Shilu ; Al Thani, Asmaa A ; Yassine, Hadi M</creator><contributor>de Brevern, Alexandre G.</contributor><creatorcontrib>Mathew, Shilu ; Al Thani, Asmaa A ; Yassine, Hadi M ; de Brevern, Alexandre G.</creatorcontrib><description>With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persistent need for the development of broader and more effective vaccines and therapeutics. Identification of broadly neutralizing antibodies (bNAbs) that recognize relatively invariant structures on influenza haemagglutinin (HA) stem has invigorated efforts to develop universal influenza vaccines.
The current computational study is designed to identify potential flavonoid inhibitors that bind to the contact epitopes of HA stem that are targeted by broadly neutralizing antibodies (bNAb).
In this study, we utilized the three-dimensional crystallographic structure of different HA subtypes (H1, H2, H5, H3, and H7) in complex with bNAb to screen for potential broadly reactive influenza inhibitors. We performed Quantitative Structure-Activity and Relationship (QSAR) for 100 natural compounds known for their antiviral activity and performed molecular docking using AutoDock 4.2 suite. Furthermore, we conducted virtual screening of 1413 bioassay hit compounds by using virtual lab bench CLC Drug Discovery.
The results showed 18 lead flavonoids with strong binding abilities to bNAb epitopes of various HA subtypes. These 18 broadly reactive compounds exhibited significant interactions with an average of seven Hbonds, docking energy of -22.43 kcal·mol-1, and minimum interaction energy of -4.65 kcal·mol-1, with functional contact residues. Procyanidin depicted strong interactions with group 1 HAs, whereas both sorbitol and procyanidin exhibited significant interactions with group 2 HAs.
Using in silico docking analysis, we identified 18 bioactive flavonoids with potential strong binding cababilities to influenza HA-stems of various subtypes, which are the target for bNAb. The virtual screened bioassay hit compounds depicted a high number of Hbonds but low interaction and docking values compared to antiviral flavonoids. Using structure-based design and nanotechnology-based approaches, identified molecules could be modified to generate next generation anti-influenza drugs.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0203148</identifier><identifier>PMID: 30180218</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amantadine ; Antibodies ; Antiviral activity ; Antiviral agents ; Antiviral Agents - chemistry ; Antiviral Agents - pharmacology ; Antiviral drugs ; Arsenic ; Avian flu ; Binding ; Bioassays ; Biology and life sciences ; Biomedical research ; Cancer therapies ; Care and treatment ; Computation ; Computer applications ; Computer Simulation ; Crystal structure ; Crystallography ; Design modifications ; Drug discovery ; Drug Discovery - methods ; Drugs ; Epitopes ; Exo-a-sialidase ; Flavonoids ; Flavonoids - antagonists & inhibitors ; Flavonoids - metabolism ; Health risks ; Health sciences ; Hemagglutinin Glycoproteins, Influenza Virus - metabolism ; Hemagglutinins ; Hydrogen Bonding ; Immunoglobulins ; Influenza ; Influenza A ; Influenza A virus ; Influenza vaccines ; Influenza viruses ; Inhibitors ; Medical research ; Medicine and Health Sciences ; Models, Molecular ; Molecular docking ; Nanoparticles ; Nanotechnology ; Neutralizing ; Organic chemistry ; Oseltamivir ; Pharmaceuticals ; Physical Sciences ; Public health ; Respiratory tract infections ; Risk factors ; Screening ; Sorbitol ; Structure-Activity Relationship ; Structure-activity relationships ; Vaccines ; Viruses</subject><ispartof>PloS one, 2018-09, Vol.13 (9), p.e0203148-e0203148</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Mathew et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Mathew et al 2018 Mathew et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-6890d79d1b2a01a67c2d89e6712fefc54695411b299ff46c535286d5aa55df9d3</citedby><cites>FETCH-LOGICAL-c692t-6890d79d1b2a01a67c2d89e6712fefc54695411b299ff46c535286d5aa55df9d3</cites><orcidid>0000-0001-7592-2788</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122827/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122827/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30180218$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>de Brevern, Alexandre G.</contributor><creatorcontrib>Mathew, Shilu</creatorcontrib><creatorcontrib>Al Thani, Asmaa A</creatorcontrib><creatorcontrib>Yassine, Hadi M</creatorcontrib><title>Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persistent need for the development of broader and more effective vaccines and therapeutics. Identification of broadly neutralizing antibodies (bNAbs) that recognize relatively invariant structures on influenza haemagglutinin (HA) stem has invigorated efforts to develop universal influenza vaccines.
The current computational study is designed to identify potential flavonoid inhibitors that bind to the contact epitopes of HA stem that are targeted by broadly neutralizing antibodies (bNAb).
In this study, we utilized the three-dimensional crystallographic structure of different HA subtypes (H1, H2, H5, H3, and H7) in complex with bNAb to screen for potential broadly reactive influenza inhibitors. We performed Quantitative Structure-Activity and Relationship (QSAR) for 100 natural compounds known for their antiviral activity and performed molecular docking using AutoDock 4.2 suite. Furthermore, we conducted virtual screening of 1413 bioassay hit compounds by using virtual lab bench CLC Drug Discovery.
The results showed 18 lead flavonoids with strong binding abilities to bNAb epitopes of various HA subtypes. These 18 broadly reactive compounds exhibited significant interactions with an average of seven Hbonds, docking energy of -22.43 kcal·mol-1, and minimum interaction energy of -4.65 kcal·mol-1, with functional contact residues. Procyanidin depicted strong interactions with group 1 HAs, whereas both sorbitol and procyanidin exhibited significant interactions with group 2 HAs.
Using in silico docking analysis, we identified 18 bioactive flavonoids with potential strong binding cababilities to influenza HA-stems of various subtypes, which are the target for bNAb. The virtual screened bioassay hit compounds depicted a high number of Hbonds but low interaction and docking values compared to antiviral flavonoids. Using structure-based design and nanotechnology-based approaches, identified molecules could be modified to generate next generation anti-influenza drugs.</description><subject>Amantadine</subject><subject>Antibodies</subject><subject>Antiviral activity</subject><subject>Antiviral agents</subject><subject>Antiviral Agents - chemistry</subject><subject>Antiviral Agents - pharmacology</subject><subject>Antiviral drugs</subject><subject>Arsenic</subject><subject>Avian flu</subject><subject>Binding</subject><subject>Bioassays</subject><subject>Biology and life sciences</subject><subject>Biomedical research</subject><subject>Cancer therapies</subject><subject>Care and treatment</subject><subject>Computation</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Crystal structure</subject><subject>Crystallography</subject><subject>Design modifications</subject><subject>Drug discovery</subject><subject>Drug Discovery - methods</subject><subject>Drugs</subject><subject>Epitopes</subject><subject>Exo-a-sialidase</subject><subject>Flavonoids</subject><subject>Flavonoids - antagonists & inhibitors</subject><subject>Flavonoids - metabolism</subject><subject>Health risks</subject><subject>Health sciences</subject><subject>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</subject><subject>Hemagglutinins</subject><subject>Hydrogen Bonding</subject><subject>Immunoglobulins</subject><subject>Influenza</subject><subject>Influenza A</subject><subject>Influenza A virus</subject><subject>Influenza vaccines</subject><subject>Influenza viruses</subject><subject>Inhibitors</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Molecular docking</subject><subject>Nanoparticles</subject><subject>Nanotechnology</subject><subject>Neutralizing</subject><subject>Organic chemistry</subject><subject>Oseltamivir</subject><subject>Pharmaceuticals</subject><subject>Physical Sciences</subject><subject>Public health</subject><subject>Respiratory tract infections</subject><subject>Risk factors</subject><subject>Screening</subject><subject>Sorbitol</subject><subject>Structure-Activity Relationship</subject><subject>Structure-activity relationships</subject><subject>Vaccines</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgujFjEnbpMmNMAzqDiws-HUb0jSZyZgm3SRdP_DHmzrdZSp7IaW0PXnOe3re5GTZUwiWsKzhm70bvOVm2Tsrl6AAJazIvewU0rJY4PR5_-j9JHsUwh4AVBKMH2YnJYAEFJCcZr_XruuHyKN2SSwPwktptd3mTuXfrPtu88Y73i5CL0X0Q5dzG_W19iPbcWNy57fcapF3zkgxGBly5XzeuygTmChtlRmk_cXz81UeouxSZKcbHZ0Pj7MHipsgn0zPs-zL-3ef1-eLi8sPm_XqYiEwLeICEwramrawKTiAHNeiaAmVuIaFkkqgClNUwbRKqVIVFqhEBcEt4hyhVtG2PMueH3R74wKbjAusAJRWJUAUJGJzIFrH96z3uuP-J3Ncs7-B1CTjPmphJKuTeCFoSUBdV6QVTV0BiDnGUBHYyDJpvZ2qDU0nW5GMSHbNROcrVu_Y1l0zDIskXSeBV5OAd1eDDJF1OghpDLfSDYf_JqRKd0Jf_IPe3d1EbXlqIO2IS3XFKMpWCNU1RRiNZZd3UOlqZadFOmVKp_gs4fUsITFR_ohbPoTANp8-_j97-XXOvjxid5KbuAvODOMZDXOwOoDCuxC8VLcmQ8DGIblxg41DwqYhSWnPjjfoNulmKso_Je4N7A</recordid><startdate>20180904</startdate><enddate>20180904</enddate><creator>Mathew, Shilu</creator><creator>Al Thani, Asmaa A</creator><creator>Yassine, Hadi M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7592-2788</orcidid></search><sort><creationdate>20180904</creationdate><title>Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors</title><author>Mathew, Shilu ; Al Thani, Asmaa A ; Yassine, Hadi M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-6890d79d1b2a01a67c2d89e6712fefc54695411b299ff46c535286d5aa55df9d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amantadine</topic><topic>Antibodies</topic><topic>Antiviral activity</topic><topic>Antiviral agents</topic><topic>Antiviral Agents - chemistry</topic><topic>Antiviral Agents - pharmacology</topic><topic>Antiviral drugs</topic><topic>Arsenic</topic><topic>Avian flu</topic><topic>Binding</topic><topic>Bioassays</topic><topic>Biology and life sciences</topic><topic>Biomedical research</topic><topic>Cancer therapies</topic><topic>Care and treatment</topic><topic>Computation</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Crystal structure</topic><topic>Crystallography</topic><topic>Design modifications</topic><topic>Drug discovery</topic><topic>Drug Discovery - methods</topic><topic>Drugs</topic><topic>Epitopes</topic><topic>Exo-a-sialidase</topic><topic>Flavonoids</topic><topic>Flavonoids - antagonists & inhibitors</topic><topic>Flavonoids - metabolism</topic><topic>Health risks</topic><topic>Health sciences</topic><topic>Hemagglutinin Glycoproteins, Influenza Virus - metabolism</topic><topic>Hemagglutinins</topic><topic>Hydrogen Bonding</topic><topic>Immunoglobulins</topic><topic>Influenza</topic><topic>Influenza A</topic><topic>Influenza A virus</topic><topic>Influenza vaccines</topic><topic>Influenza viruses</topic><topic>Inhibitors</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Molecular docking</topic><topic>Nanoparticles</topic><topic>Nanotechnology</topic><topic>Neutralizing</topic><topic>Organic chemistry</topic><topic>Oseltamivir</topic><topic>Pharmaceuticals</topic><topic>Physical Sciences</topic><topic>Public health</topic><topic>Respiratory tract infections</topic><topic>Risk factors</topic><topic>Screening</topic><topic>Sorbitol</topic><topic>Structure-Activity Relationship</topic><topic>Structure-activity relationships</topic><topic>Vaccines</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mathew, Shilu</creatorcontrib><creatorcontrib>Al Thani, Asmaa A</creatorcontrib><creatorcontrib>Yassine, Hadi M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mathew, Shilu</au><au>Al Thani, Asmaa A</au><au>Yassine, Hadi M</au><au>de Brevern, Alexandre G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-09-04</date><risdate>2018</risdate><volume>13</volume><issue>9</issue><spage>e0203148</spage><epage>e0203148</epage><pages>e0203148-e0203148</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>With the emergence of new influenza virus strains that are resistant to current inhibitors such as oseltamivir (anti-neuraminidase (NA)) and amantadine (anti-M2 proton channel), influenza A viruses continue to be a serious threat to the public health worldwide. With this in view, there is a persistent need for the development of broader and more effective vaccines and therapeutics. Identification of broadly neutralizing antibodies (bNAbs) that recognize relatively invariant structures on influenza haemagglutinin (HA) stem has invigorated efforts to develop universal influenza vaccines.
The current computational study is designed to identify potential flavonoid inhibitors that bind to the contact epitopes of HA stem that are targeted by broadly neutralizing antibodies (bNAb).
In this study, we utilized the three-dimensional crystallographic structure of different HA subtypes (H1, H2, H5, H3, and H7) in complex with bNAb to screen for potential broadly reactive influenza inhibitors. We performed Quantitative Structure-Activity and Relationship (QSAR) for 100 natural compounds known for their antiviral activity and performed molecular docking using AutoDock 4.2 suite. Furthermore, we conducted virtual screening of 1413 bioassay hit compounds by using virtual lab bench CLC Drug Discovery.
The results showed 18 lead flavonoids with strong binding abilities to bNAb epitopes of various HA subtypes. These 18 broadly reactive compounds exhibited significant interactions with an average of seven Hbonds, docking energy of -22.43 kcal·mol-1, and minimum interaction energy of -4.65 kcal·mol-1, with functional contact residues. Procyanidin depicted strong interactions with group 1 HAs, whereas both sorbitol and procyanidin exhibited significant interactions with group 2 HAs.
Using in silico docking analysis, we identified 18 bioactive flavonoids with potential strong binding cababilities to influenza HA-stems of various subtypes, which are the target for bNAb. The virtual screened bioassay hit compounds depicted a high number of Hbonds but low interaction and docking values compared to antiviral flavonoids. Using structure-based design and nanotechnology-based approaches, identified molecules could be modified to generate next generation anti-influenza drugs.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30180218</pmid><doi>10.1371/journal.pone.0203148</doi><tpages>e0203148</tpages><orcidid>https://orcid.org/0000-0001-7592-2788</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-09, Vol.13 (9), p.e0203148-e0203148 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2099430590 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amantadine Antibodies Antiviral activity Antiviral agents Antiviral Agents - chemistry Antiviral Agents - pharmacology Antiviral drugs Arsenic Avian flu Binding Bioassays Biology and life sciences Biomedical research Cancer therapies Care and treatment Computation Computer applications Computer Simulation Crystal structure Crystallography Design modifications Drug discovery Drug Discovery - methods Drugs Epitopes Exo-a-sialidase Flavonoids Flavonoids - antagonists & inhibitors Flavonoids - metabolism Health risks Health sciences Hemagglutinin Glycoproteins, Influenza Virus - metabolism Hemagglutinins Hydrogen Bonding Immunoglobulins Influenza Influenza A Influenza A virus Influenza vaccines Influenza viruses Inhibitors Medical research Medicine and Health Sciences Models, Molecular Molecular docking Nanoparticles Nanotechnology Neutralizing Organic chemistry Oseltamivir Pharmaceuticals Physical Sciences Public health Respiratory tract infections Risk factors Screening Sorbitol Structure-Activity Relationship Structure-activity relationships Vaccines Viruses |
title | Computational screening of known broad-spectrum antiviral small organic molecules for potential influenza HA stem inhibitors |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T16%3A21%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Computational%20screening%20of%20known%20broad-spectrum%20antiviral%20small%20organic%20molecules%20for%20potential%20influenza%20HA%20stem%20inhibitors&rft.jtitle=PloS%20one&rft.au=Mathew,%20Shilu&rft.date=2018-09-04&rft.volume=13&rft.issue=9&rft.spage=e0203148&rft.epage=e0203148&rft.pages=e0203148-e0203148&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0203148&rft_dat=%3Cgale_plos_%3EA557795657%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2099430590&rft_id=info:pmid/30180218&rft_galeid=A557795657&rft_doaj_id=oai_doaj_org_article_75282c93807748dcb74016a661f81be3&rfr_iscdi=true |