Genome-wide identification of clusters of predicted microRNA binding sites as microRNA sponge candidates

The number of discovered natural miRNA sponges in plants, viruses, and mammals is increasing steadily. Some sponges like ciRS-7 for miR-7 contain multiple nearby miRNA binding sites. We hypothesize that such clusters of miRNA binding sites on the genome can function together as a sponge. No systemat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-08, Vol.13 (8), p.e0202369-e0202369
Hauptverfasser: Pan, Xiaoyong, Wenzel, Anne, Jensen, Lars Juhl, Gorodkin, Jan
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0202369
container_issue 8
container_start_page e0202369
container_title PloS one
container_volume 13
creator Pan, Xiaoyong
Wenzel, Anne
Jensen, Lars Juhl
Gorodkin, Jan
description The number of discovered natural miRNA sponges in plants, viruses, and mammals is increasing steadily. Some sponges like ciRS-7 for miR-7 contain multiple nearby miRNA binding sites. We hypothesize that such clusters of miRNA binding sites on the genome can function together as a sponge. No systematic effort has been made in search for clusters of miRNA targets. Here, we, to our knowledge, make the first genome-wide target site predictions for clusters of mature human miRNAs. For each miRNA, we predict the target sites on a genome-wide scale, build a graph with edge weights based on the pairwise distances between sites, and apply Markov clustering to identify genomic regions with high binding site density. Significant clusters are then extracted based on cluster size difference between real and shuffled genomes preserving local properties such as the GC content. We then use conservation and binding energy to filter a final set of miRNA target site clusters or sponge candidates. Our pipeline predicts 3673 sponge candidates for 1250 miRNAs, including the experimentally verified miR-7 sponge ciRS-7. In addition, we point explicitly to 19 high-confidence candidates overlapping annotated genomic sequence. The full list of candidates is freely available at http://rth.dk/resources/mirnasponge, where detailed properties for individual candidates can be explored, such as alignment details, conservation, accessibility and target profiles, which facilitates selection of sponge candidates for further context specific analysis.
doi_str_mv 10.1371/journal.pone.0202369
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2092839105</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551614361</galeid><doaj_id>oai_doaj_org_article_9ff08224c63641a798b18a25f0fd9074</doaj_id><sourcerecordid>A551614361</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-95a5d6d3662e0d69bc9add6f4ea242e6738fdcc9d7841f5f05f942531666b9433</originalsourceid><addsrcrecordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLk1bV6EYdF1YHFhvbyGTHLSydBpZpPWy7c33emuU9kHCSEh53f-Jzk5J8ueY7TAtMTvtr4PrWoWe9_CAhFEKBcPslMsKJlzgujDo_1J9iTGLUIFrTh_nJ1QhBnBgp9mm3No_Q7mP52BPM22c9Zp1Tnf5t7muuljByEO-30A43QHJt85HfzV52W-dq1xbZ1H10HMVfxrielaNeRaJcCoZH2aPbKqifBsXGfZt48fvp59ml9cnq_OlhdzXRZVNxeFKgw3lHMCyHCx1kIZwy0DRRgBXtLKGq2FKSuGbWFRYQUjBcWc87VglM6ylwfdfeOjHJMUJUGCVFTglIJZtjoQxqut3Ae3U-G39MrJmwMfaqlC53QDUliLKkKY5pQzrEpRrXGlSAprjUAlS1rvx2j9egdGp_wF1UxEp5bWbWTtf0iOUcVKngTejALBX_cQO7lzUUPTqBZ8f3NvSkWFizKhr_5B73_dSNUqPcC11qe4ehCVy6LAHDPKcaIW91BpGEhfmCrKunQ-cXg7cUhMB7-6WvUxytWXq_9nL79P2ddH7AZU022ib_qhAOMUZAcwFViMAexdkjGSQ0PcZkMODSHHhkhuL44_6M7ptgPoH-C6BQQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092839105</pqid></control><display><type>article</type><title>Genome-wide identification of clusters of predicted microRNA binding sites as microRNA sponge candidates</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Pan, Xiaoyong ; Wenzel, Anne ; Jensen, Lars Juhl ; Gorodkin, Jan</creator><creatorcontrib>Pan, Xiaoyong ; Wenzel, Anne ; Jensen, Lars Juhl ; Gorodkin, Jan</creatorcontrib><description>The number of discovered natural miRNA sponges in plants, viruses, and mammals is increasing steadily. Some sponges like ciRS-7 for miR-7 contain multiple nearby miRNA binding sites. We hypothesize that such clusters of miRNA binding sites on the genome can function together as a sponge. No systematic effort has been made in search for clusters of miRNA targets. Here, we, to our knowledge, make the first genome-wide target site predictions for clusters of mature human miRNAs. For each miRNA, we predict the target sites on a genome-wide scale, build a graph with edge weights based on the pairwise distances between sites, and apply Markov clustering to identify genomic regions with high binding site density. Significant clusters are then extracted based on cluster size difference between real and shuffled genomes preserving local properties such as the GC content. We then use conservation and binding energy to filter a final set of miRNA target site clusters or sponge candidates. Our pipeline predicts 3673 sponge candidates for 1250 miRNAs, including the experimentally verified miR-7 sponge ciRS-7. In addition, we point explicitly to 19 high-confidence candidates overlapping annotated genomic sequence. The full list of candidates is freely available at http://rth.dk/resources/mirnasponge, where detailed properties for individual candidates can be explored, such as alignment details, conservation, accessibility and target profiles, which facilitates selection of sponge candidates for further context specific analysis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0202369</identifier><identifier>PMID: 30142196</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acids ; Analysis ; Animal sciences ; Binding proteins ; Binding sites ; Bioinformatics ; Biology and life sciences ; Cancer ; Clustering ; Computer and Information Sciences ; Conservation ; Energy conservation ; Gene expression ; Genome, Human ; Genome-Wide Association Study ; Genomes ; Genomics ; Globular clusters ; Humans ; Hypotheses ; Markov processes ; MicroRNA ; MicroRNAs ; MicroRNAs - genetics ; MicroRNAs - metabolism ; miRNA ; Physical Sciences ; Plant viruses ; Predictions ; Proteins ; Research and Analysis Methods ; Ribonucleic acid ; RNA ; Sequence Analysis, RNA - methods ; Sponges ; Viruses</subject><ispartof>PloS one, 2018-08, Vol.13 (8), p.e0202369-e0202369</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Pan et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Pan et al 2018 Pan et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-95a5d6d3662e0d69bc9add6f4ea242e6738fdcc9d7841f5f05f942531666b9433</citedby><cites>FETCH-LOGICAL-c758t-95a5d6d3662e0d69bc9add6f4ea242e6738fdcc9d7841f5f05f942531666b9433</cites><orcidid>0000-0001-5823-4000</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108476/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6108476/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30142196$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pan, Xiaoyong</creatorcontrib><creatorcontrib>Wenzel, Anne</creatorcontrib><creatorcontrib>Jensen, Lars Juhl</creatorcontrib><creatorcontrib>Gorodkin, Jan</creatorcontrib><title>Genome-wide identification of clusters of predicted microRNA binding sites as microRNA sponge candidates</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The number of discovered natural miRNA sponges in plants, viruses, and mammals is increasing steadily. Some sponges like ciRS-7 for miR-7 contain multiple nearby miRNA binding sites. We hypothesize that such clusters of miRNA binding sites on the genome can function together as a sponge. No systematic effort has been made in search for clusters of miRNA targets. Here, we, to our knowledge, make the first genome-wide target site predictions for clusters of mature human miRNAs. For each miRNA, we predict the target sites on a genome-wide scale, build a graph with edge weights based on the pairwise distances between sites, and apply Markov clustering to identify genomic regions with high binding site density. Significant clusters are then extracted based on cluster size difference between real and shuffled genomes preserving local properties such as the GC content. We then use conservation and binding energy to filter a final set of miRNA target site clusters or sponge candidates. Our pipeline predicts 3673 sponge candidates for 1250 miRNAs, including the experimentally verified miR-7 sponge ciRS-7. In addition, we point explicitly to 19 high-confidence candidates overlapping annotated genomic sequence. The full list of candidates is freely available at http://rth.dk/resources/mirnasponge, where detailed properties for individual candidates can be explored, such as alignment details, conservation, accessibility and target profiles, which facilitates selection of sponge candidates for further context specific analysis.</description><subject>Acids</subject><subject>Analysis</subject><subject>Animal sciences</subject><subject>Binding proteins</subject><subject>Binding sites</subject><subject>Bioinformatics</subject><subject>Biology and life sciences</subject><subject>Cancer</subject><subject>Clustering</subject><subject>Computer and Information Sciences</subject><subject>Conservation</subject><subject>Energy conservation</subject><subject>Gene expression</subject><subject>Genome, Human</subject><subject>Genome-Wide Association Study</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Globular clusters</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Markov processes</subject><subject>MicroRNA</subject><subject>MicroRNAs</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - metabolism</subject><subject>miRNA</subject><subject>Physical Sciences</subject><subject>Plant viruses</subject><subject>Predictions</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>Sequence Analysis, RNA - methods</subject><subject>Sponges</subject><subject>Viruses</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1uL1DAUx4so7jr6DUQLgujDjLk1bV6EYdF1YHFhvbyGTHLSydBpZpPWy7c33emuU9kHCSEh53f-Jzk5J8ueY7TAtMTvtr4PrWoWe9_CAhFEKBcPslMsKJlzgujDo_1J9iTGLUIFrTh_nJ1QhBnBgp9mm3No_Q7mP52BPM22c9Zp1Tnf5t7muuljByEO-30A43QHJt85HfzV52W-dq1xbZ1H10HMVfxrielaNeRaJcCoZH2aPbKqifBsXGfZt48fvp59ml9cnq_OlhdzXRZVNxeFKgw3lHMCyHCx1kIZwy0DRRgBXtLKGq2FKSuGbWFRYQUjBcWc87VglM6ylwfdfeOjHJMUJUGCVFTglIJZtjoQxqut3Ae3U-G39MrJmwMfaqlC53QDUliLKkKY5pQzrEpRrXGlSAprjUAlS1rvx2j9egdGp_wF1UxEp5bWbWTtf0iOUcVKngTejALBX_cQO7lzUUPTqBZ8f3NvSkWFizKhr_5B73_dSNUqPcC11qe4ehCVy6LAHDPKcaIW91BpGEhfmCrKunQ-cXg7cUhMB7-6WvUxytWXq_9nL79P2ddH7AZU022ib_qhAOMUZAcwFViMAexdkjGSQ0PcZkMODSHHhkhuL44_6M7ptgPoH-C6BQQ</recordid><startdate>20180824</startdate><enddate>20180824</enddate><creator>Pan, Xiaoyong</creator><creator>Wenzel, Anne</creator><creator>Jensen, Lars Juhl</creator><creator>Gorodkin, Jan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5823-4000</orcidid></search><sort><creationdate>20180824</creationdate><title>Genome-wide identification of clusters of predicted microRNA binding sites as microRNA sponge candidates</title><author>Pan, Xiaoyong ; Wenzel, Anne ; Jensen, Lars Juhl ; Gorodkin, Jan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-95a5d6d3662e0d69bc9add6f4ea242e6738fdcc9d7841f5f05f942531666b9433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acids</topic><topic>Analysis</topic><topic>Animal sciences</topic><topic>Binding proteins</topic><topic>Binding sites</topic><topic>Bioinformatics</topic><topic>Biology and life sciences</topic><topic>Cancer</topic><topic>Clustering</topic><topic>Computer and Information Sciences</topic><topic>Conservation</topic><topic>Energy conservation</topic><topic>Gene expression</topic><topic>Genome, Human</topic><topic>Genome-Wide Association Study</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Globular clusters</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Markov processes</topic><topic>MicroRNA</topic><topic>MicroRNAs</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - metabolism</topic><topic>miRNA</topic><topic>Physical Sciences</topic><topic>Plant viruses</topic><topic>Predictions</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>Sequence Analysis, RNA - methods</topic><topic>Sponges</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pan, Xiaoyong</creatorcontrib><creatorcontrib>Wenzel, Anne</creatorcontrib><creatorcontrib>Jensen, Lars Juhl</creatorcontrib><creatorcontrib>Gorodkin, Jan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pan, Xiaoyong</au><au>Wenzel, Anne</au><au>Jensen, Lars Juhl</au><au>Gorodkin, Jan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-wide identification of clusters of predicted microRNA binding sites as microRNA sponge candidates</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-08-24</date><risdate>2018</risdate><volume>13</volume><issue>8</issue><spage>e0202369</spage><epage>e0202369</epage><pages>e0202369-e0202369</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The number of discovered natural miRNA sponges in plants, viruses, and mammals is increasing steadily. Some sponges like ciRS-7 for miR-7 contain multiple nearby miRNA binding sites. We hypothesize that such clusters of miRNA binding sites on the genome can function together as a sponge. No systematic effort has been made in search for clusters of miRNA targets. Here, we, to our knowledge, make the first genome-wide target site predictions for clusters of mature human miRNAs. For each miRNA, we predict the target sites on a genome-wide scale, build a graph with edge weights based on the pairwise distances between sites, and apply Markov clustering to identify genomic regions with high binding site density. Significant clusters are then extracted based on cluster size difference between real and shuffled genomes preserving local properties such as the GC content. We then use conservation and binding energy to filter a final set of miRNA target site clusters or sponge candidates. Our pipeline predicts 3673 sponge candidates for 1250 miRNAs, including the experimentally verified miR-7 sponge ciRS-7. In addition, we point explicitly to 19 high-confidence candidates overlapping annotated genomic sequence. The full list of candidates is freely available at http://rth.dk/resources/mirnasponge, where detailed properties for individual candidates can be explored, such as alignment details, conservation, accessibility and target profiles, which facilitates selection of sponge candidates for further context specific analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30142196</pmid><doi>10.1371/journal.pone.0202369</doi><tpages>e0202369</tpages><orcidid>https://orcid.org/0000-0001-5823-4000</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-08, Vol.13 (8), p.e0202369-e0202369
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2092839105
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Acids
Analysis
Animal sciences
Binding proteins
Binding sites
Bioinformatics
Biology and life sciences
Cancer
Clustering
Computer and Information Sciences
Conservation
Energy conservation
Gene expression
Genome, Human
Genome-Wide Association Study
Genomes
Genomics
Globular clusters
Humans
Hypotheses
Markov processes
MicroRNA
MicroRNAs
MicroRNAs - genetics
MicroRNAs - metabolism
miRNA
Physical Sciences
Plant viruses
Predictions
Proteins
Research and Analysis Methods
Ribonucleic acid
RNA
Sequence Analysis, RNA - methods
Sponges
Viruses
title Genome-wide identification of clusters of predicted microRNA binding sites as microRNA sponge candidates
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T02%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-wide%20identification%20of%20clusters%20of%20predicted%20microRNA%20binding%20sites%20as%20microRNA%20sponge%20candidates&rft.jtitle=PloS%20one&rft.au=Pan,%20Xiaoyong&rft.date=2018-08-24&rft.volume=13&rft.issue=8&rft.spage=e0202369&rft.epage=e0202369&rft.pages=e0202369-e0202369&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0202369&rft_dat=%3Cgale_plos_%3EA551614361%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092839105&rft_id=info:pmid/30142196&rft_galeid=A551614361&rft_doaj_id=oai_doaj_org_article_9ff08224c63641a798b18a25f0fd9074&rfr_iscdi=true