Predictive pollen-based biome modeling using machine learning
This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classi...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-08, Vol.13 (8), p.e0202214 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 8 |
container_start_page | e0202214 |
container_title | PloS one |
container_volume | 13 |
creator | Sobol, Magdalena K Finkelstein, Sarah A |
description | This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change. |
doi_str_mv | 10.1371/journal.pone.0202214 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2092587544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551445770</galeid><doaj_id>oai_doaj_org_article_d80a8694a43942d188180aba0b403d68</doaj_id><sourcerecordid>A551445770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7kW_gWhBEHzomFvT9EFhWbwMLKx4ew1pctrJkDZj0i7utzfjdJcpKEggCSe_88-5ZdkzjFaYVvjN1k9hUG618wOsEEGEYPYgO8U1JQUniD48up9kZzFuESqp4PxxdkIRpoJyfpq9_RzAWD3aG8h33jkYikZFMHljfQ957w04O3T5FPd7r_TGDpA7UGFIhifZo1a5CE_n8zz7_uH9t8tPxdX1x_XlxVWheU3GomUlQE2NMBhp1iqGOUeKMKqrtiSG1pyyqmxbIUqEGkRJY0xTAzQNZwgA0fPsxUF353yUc-ZRElSTUlQlY4lYHwjj1Vbugu1VuJVeWfnH4EMnVRitdiCNQErwmilGa0YMFgInS6NQwxA1XCStd_NvU9OD0TCMQbmF6PJlsBvZ-RvJcWoCrZLAy1kg-J8TxPEfIc9Up1JUdmh9EtO9jVpelCVmrKyqfeqrv1BpGeitTr1vbbIvHF4vHBIzwq-xU1OMcv31y_-z1z-W7KsjdgPKjZvo3TRaP8QlyA6gDj7GAO195TCS-9G9q4bcj66cRze5PT-u-r3T3azS39TL57Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092587544</pqid></control><display><type>article</type><title>Predictive pollen-based biome modeling using machine learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sobol, Magdalena K ; Finkelstein, Sarah A</creator><contributor>Minasny, Budiman</contributor><creatorcontrib>Sobol, Magdalena K ; Finkelstein, Sarah A ; Minasny, Budiman</creatorcontrib><description>This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0202214</identifier><identifier>PMID: 30138366</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Africa ; Algorithms ; Aridity ; Artificial intelligence ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Classification ; Classifiers ; Climate Change ; Computer and Information Sciences ; Data processing ; Datasets ; Decision analysis ; Decision Trees ; Discriminant Analysis ; Earth ; Earth science ; Earth Sciences ; Ecology and Environmental Sciences ; Ecosystem ; Environmental aspects ; Environmental changes ; Forests ; Fossil pollen ; Fossils ; Grasslands ; Learning algorithms ; Logistic Models ; Machine learning ; Methods ; Models, Statistical ; Neural networks ; Neural Networks, Computer ; Open systems ; Physical Sciences ; Pollen ; Pollen - classification ; Predictions ; Regression analysis ; Research and Analysis Methods ; Statistical analysis ; Statistical methods ; Statistics, Nonparametric ; Supervised Machine Learning ; Support Vector Machine ; Support vector machines ; Vegetation ; Vegetation changes ; Vegetation cover</subject><ispartof>PloS one, 2018-08, Vol.13 (8), p.e0202214</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Sobol, Finkelstein. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Sobol, Finkelstein 2018 Sobol, Finkelstein</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</citedby><cites>FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</cites><orcidid>0000-0002-8239-399X ; 0000-0002-2331-6388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122137/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122137/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30138366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Minasny, Budiman</contributor><creatorcontrib>Sobol, Magdalena K</creatorcontrib><creatorcontrib>Finkelstein, Sarah A</creatorcontrib><title>Predictive pollen-based biome modeling using machine learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.</description><subject>Africa</subject><subject>Algorithms</subject><subject>Aridity</subject><subject>Artificial intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Climate Change</subject><subject>Computer and Information Sciences</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Decision Trees</subject><subject>Discriminant Analysis</subject><subject>Earth</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Environmental aspects</subject><subject>Environmental changes</subject><subject>Forests</subject><subject>Fossil pollen</subject><subject>Fossils</subject><subject>Grasslands</subject><subject>Learning algorithms</subject><subject>Logistic Models</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Open systems</subject><subject>Physical Sciences</subject><subject>Pollen</subject><subject>Pollen - classification</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics, Nonparametric</subject><subject>Supervised Machine Learning</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Vegetation</subject><subject>Vegetation changes</subject><subject>Vegetation cover</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7kW_gWhBEHzomFvT9EFhWbwMLKx4ew1pctrJkDZj0i7utzfjdJcpKEggCSe_88-5ZdkzjFaYVvjN1k9hUG618wOsEEGEYPYgO8U1JQUniD48up9kZzFuESqp4PxxdkIRpoJyfpq9_RzAWD3aG8h33jkYikZFMHljfQ957w04O3T5FPd7r_TGDpA7UGFIhifZo1a5CE_n8zz7_uH9t8tPxdX1x_XlxVWheU3GomUlQE2NMBhp1iqGOUeKMKqrtiSG1pyyqmxbIUqEGkRJY0xTAzQNZwgA0fPsxUF353yUc-ZRElSTUlQlY4lYHwjj1Vbugu1VuJVeWfnH4EMnVRitdiCNQErwmilGa0YMFgInS6NQwxA1XCStd_NvU9OD0TCMQbmF6PJlsBvZ-RvJcWoCrZLAy1kg-J8TxPEfIc9Up1JUdmh9EtO9jVpelCVmrKyqfeqrv1BpGeitTr1vbbIvHF4vHBIzwq-xU1OMcv31y_-z1z-W7KsjdgPKjZvo3TRaP8QlyA6gDj7GAO195TCS-9G9q4bcj66cRze5PT-u-r3T3azS39TL57Y</recordid><startdate>20180823</startdate><enddate>20180823</enddate><creator>Sobol, Magdalena K</creator><creator>Finkelstein, Sarah A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8239-399X</orcidid><orcidid>https://orcid.org/0000-0002-2331-6388</orcidid></search><sort><creationdate>20180823</creationdate><title>Predictive pollen-based biome modeling using machine learning</title><author>Sobol, Magdalena K ; Finkelstein, Sarah A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Africa</topic><topic>Algorithms</topic><topic>Aridity</topic><topic>Artificial intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Climate Change</topic><topic>Computer and Information Sciences</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Decision Trees</topic><topic>Discriminant Analysis</topic><topic>Earth</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Environmental aspects</topic><topic>Environmental changes</topic><topic>Forests</topic><topic>Fossil pollen</topic><topic>Fossils</topic><topic>Grasslands</topic><topic>Learning algorithms</topic><topic>Logistic Models</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Open systems</topic><topic>Physical Sciences</topic><topic>Pollen</topic><topic>Pollen - classification</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics, Nonparametric</topic><topic>Supervised Machine Learning</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Vegetation</topic><topic>Vegetation changes</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobol, Magdalena K</creatorcontrib><creatorcontrib>Finkelstein, Sarah A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobol, Magdalena K</au><au>Finkelstein, Sarah A</au><au>Minasny, Budiman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive pollen-based biome modeling using machine learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-08-23</date><risdate>2018</risdate><volume>13</volume><issue>8</issue><spage>e0202214</spage><pages>e0202214-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30138366</pmid><doi>10.1371/journal.pone.0202214</doi><tpages>e0202214</tpages><orcidid>https://orcid.org/0000-0002-8239-399X</orcidid><orcidid>https://orcid.org/0000-0002-2331-6388</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-08, Vol.13 (8), p.e0202214 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2092587544 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Africa Algorithms Aridity Artificial intelligence Bayes Theorem Bayesian analysis Biology and Life Sciences Classification Classifiers Climate Change Computer and Information Sciences Data processing Datasets Decision analysis Decision Trees Discriminant Analysis Earth Earth science Earth Sciences Ecology and Environmental Sciences Ecosystem Environmental aspects Environmental changes Forests Fossil pollen Fossils Grasslands Learning algorithms Logistic Models Machine learning Methods Models, Statistical Neural networks Neural Networks, Computer Open systems Physical Sciences Pollen Pollen - classification Predictions Regression analysis Research and Analysis Methods Statistical analysis Statistical methods Statistics, Nonparametric Supervised Machine Learning Support Vector Machine Support vector machines Vegetation Vegetation changes Vegetation cover |
title | Predictive pollen-based biome modeling using machine learning |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20pollen-based%20biome%20modeling%20using%20machine%20learning&rft.jtitle=PloS%20one&rft.au=Sobol,%20Magdalena%20K&rft.date=2018-08-23&rft.volume=13&rft.issue=8&rft.spage=e0202214&rft.pages=e0202214-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0202214&rft_dat=%3Cgale_plos_%3EA551445770%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092587544&rft_id=info:pmid/30138366&rft_galeid=A551445770&rft_doaj_id=oai_doaj_org_article_d80a8694a43942d188180aba0b403d68&rfr_iscdi=true |