Predictive pollen-based biome modeling using machine learning

This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-08, Vol.13 (8), p.e0202214
Hauptverfasser: Sobol, Magdalena K, Finkelstein, Sarah A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0202214
container_title PloS one
container_volume 13
creator Sobol, Magdalena K
Finkelstein, Sarah A
description This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.
doi_str_mv 10.1371/journal.pone.0202214
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2092587544</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A551445770</galeid><doaj_id>oai_doaj_org_article_d80a8694a43942d188180aba0b403d68</doaj_id><sourcerecordid>A551445770</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</originalsourceid><addsrcrecordid>eNqNkluL1DAUx4so7kW_gWhBEHzomFvT9EFhWbwMLKx4ew1pctrJkDZj0i7utzfjdJcpKEggCSe_88-5ZdkzjFaYVvjN1k9hUG618wOsEEGEYPYgO8U1JQUniD48up9kZzFuESqp4PxxdkIRpoJyfpq9_RzAWD3aG8h33jkYikZFMHljfQ957w04O3T5FPd7r_TGDpA7UGFIhifZo1a5CE_n8zz7_uH9t8tPxdX1x_XlxVWheU3GomUlQE2NMBhp1iqGOUeKMKqrtiSG1pyyqmxbIUqEGkRJY0xTAzQNZwgA0fPsxUF353yUc-ZRElSTUlQlY4lYHwjj1Vbugu1VuJVeWfnH4EMnVRitdiCNQErwmilGa0YMFgInS6NQwxA1XCStd_NvU9OD0TCMQbmF6PJlsBvZ-RvJcWoCrZLAy1kg-J8TxPEfIc9Up1JUdmh9EtO9jVpelCVmrKyqfeqrv1BpGeitTr1vbbIvHF4vHBIzwq-xU1OMcv31y_-z1z-W7KsjdgPKjZvo3TRaP8QlyA6gDj7GAO195TCS-9G9q4bcj66cRze5PT-u-r3T3azS39TL57Y</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2092587544</pqid></control><display><type>article</type><title>Predictive pollen-based biome modeling using machine learning</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sobol, Magdalena K ; Finkelstein, Sarah A</creator><contributor>Minasny, Budiman</contributor><creatorcontrib>Sobol, Magdalena K ; Finkelstein, Sarah A ; Minasny, Budiman</creatorcontrib><description>This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0202214</identifier><identifier>PMID: 30138366</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Africa ; Algorithms ; Aridity ; Artificial intelligence ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Classification ; Classifiers ; Climate Change ; Computer and Information Sciences ; Data processing ; Datasets ; Decision analysis ; Decision Trees ; Discriminant Analysis ; Earth ; Earth science ; Earth Sciences ; Ecology and Environmental Sciences ; Ecosystem ; Environmental aspects ; Environmental changes ; Forests ; Fossil pollen ; Fossils ; Grasslands ; Learning algorithms ; Logistic Models ; Machine learning ; Methods ; Models, Statistical ; Neural networks ; Neural Networks, Computer ; Open systems ; Physical Sciences ; Pollen ; Pollen - classification ; Predictions ; Regression analysis ; Research and Analysis Methods ; Statistical analysis ; Statistical methods ; Statistics, Nonparametric ; Supervised Machine Learning ; Support Vector Machine ; Support vector machines ; Vegetation ; Vegetation changes ; Vegetation cover</subject><ispartof>PloS one, 2018-08, Vol.13 (8), p.e0202214</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Sobol, Finkelstein. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Sobol, Finkelstein 2018 Sobol, Finkelstein</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</citedby><cites>FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</cites><orcidid>0000-0002-8239-399X ; 0000-0002-2331-6388</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122137/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6122137/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30138366$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Minasny, Budiman</contributor><creatorcontrib>Sobol, Magdalena K</creatorcontrib><creatorcontrib>Finkelstein, Sarah A</creatorcontrib><title>Predictive pollen-based biome modeling using machine learning</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.</description><subject>Africa</subject><subject>Algorithms</subject><subject>Aridity</subject><subject>Artificial intelligence</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Climate Change</subject><subject>Computer and Information Sciences</subject><subject>Data processing</subject><subject>Datasets</subject><subject>Decision analysis</subject><subject>Decision Trees</subject><subject>Discriminant Analysis</subject><subject>Earth</subject><subject>Earth science</subject><subject>Earth Sciences</subject><subject>Ecology and Environmental Sciences</subject><subject>Ecosystem</subject><subject>Environmental aspects</subject><subject>Environmental changes</subject><subject>Forests</subject><subject>Fossil pollen</subject><subject>Fossils</subject><subject>Grasslands</subject><subject>Learning algorithms</subject><subject>Logistic Models</subject><subject>Machine learning</subject><subject>Methods</subject><subject>Models, Statistical</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Open systems</subject><subject>Physical Sciences</subject><subject>Pollen</subject><subject>Pollen - classification</subject><subject>Predictions</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Statistical analysis</subject><subject>Statistical methods</subject><subject>Statistics, Nonparametric</subject><subject>Supervised Machine Learning</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Vegetation</subject><subject>Vegetation changes</subject><subject>Vegetation cover</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAUx4so7kW_gWhBEHzomFvT9EFhWbwMLKx4ew1pctrJkDZj0i7utzfjdJcpKEggCSe_88-5ZdkzjFaYVvjN1k9hUG618wOsEEGEYPYgO8U1JQUniD48up9kZzFuESqp4PxxdkIRpoJyfpq9_RzAWD3aG8h33jkYikZFMHljfQ957w04O3T5FPd7r_TGDpA7UGFIhifZo1a5CE_n8zz7_uH9t8tPxdX1x_XlxVWheU3GomUlQE2NMBhp1iqGOUeKMKqrtiSG1pyyqmxbIUqEGkRJY0xTAzQNZwgA0fPsxUF353yUc-ZRElSTUlQlY4lYHwjj1Vbugu1VuJVeWfnH4EMnVRitdiCNQErwmilGa0YMFgInS6NQwxA1XCStd_NvU9OD0TCMQbmF6PJlsBvZ-RvJcWoCrZLAy1kg-J8TxPEfIc9Up1JUdmh9EtO9jVpelCVmrKyqfeqrv1BpGeitTr1vbbIvHF4vHBIzwq-xU1OMcv31y_-z1z-W7KsjdgPKjZvo3TRaP8QlyA6gDj7GAO195TCS-9G9q4bcj66cRze5PT-u-r3T3azS39TL57Y</recordid><startdate>20180823</startdate><enddate>20180823</enddate><creator>Sobol, Magdalena K</creator><creator>Finkelstein, Sarah A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8239-399X</orcidid><orcidid>https://orcid.org/0000-0002-2331-6388</orcidid></search><sort><creationdate>20180823</creationdate><title>Predictive pollen-based biome modeling using machine learning</title><author>Sobol, Magdalena K ; Finkelstein, Sarah A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-f45ee93d8d10c4fa41660a243c7f52d3963475ff88500b032bddb9eebb640ee03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Africa</topic><topic>Algorithms</topic><topic>Aridity</topic><topic>Artificial intelligence</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Climate Change</topic><topic>Computer and Information Sciences</topic><topic>Data processing</topic><topic>Datasets</topic><topic>Decision analysis</topic><topic>Decision Trees</topic><topic>Discriminant Analysis</topic><topic>Earth</topic><topic>Earth science</topic><topic>Earth Sciences</topic><topic>Ecology and Environmental Sciences</topic><topic>Ecosystem</topic><topic>Environmental aspects</topic><topic>Environmental changes</topic><topic>Forests</topic><topic>Fossil pollen</topic><topic>Fossils</topic><topic>Grasslands</topic><topic>Learning algorithms</topic><topic>Logistic Models</topic><topic>Machine learning</topic><topic>Methods</topic><topic>Models, Statistical</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Open systems</topic><topic>Physical Sciences</topic><topic>Pollen</topic><topic>Pollen - classification</topic><topic>Predictions</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Statistical analysis</topic><topic>Statistical methods</topic><topic>Statistics, Nonparametric</topic><topic>Supervised Machine Learning</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Vegetation</topic><topic>Vegetation changes</topic><topic>Vegetation cover</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sobol, Magdalena K</creatorcontrib><creatorcontrib>Finkelstein, Sarah A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sobol, Magdalena K</au><au>Finkelstein, Sarah A</au><au>Minasny, Budiman</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive pollen-based biome modeling using machine learning</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-08-23</date><risdate>2018</risdate><volume>13</volume><issue>8</issue><spage>e0202214</spage><pages>e0202214-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This paper investigates suitability of supervised machine learning classification methods for classification of biomes using pollen datasets. We assign modern pollen samples from Africa and Arabia to five biome classes using a previously published African pollen dataset and a global ecosystem classification scheme. To test the applicability of traditional and machine-learning based classification models for the task of biome prediction from high dimensional modern pollen data, we train a total of eight classification models, including Linear Discriminant Analysis, Logistic Regression, Naïve Bayes, K-Nearest Neighbors, Classification Decision Tree, Random Forest, Neural Network, and Support Vector Machine. The ability of each model to predict biomes from pollen data is statistically tested on an independent test set. The Random Forest classifier outperforms other models in its ability correctly classify biomes given pollen data. Out of the eight models, the Random Forest classifier scores highest on all of the metrics used for model evaluations and is able to predict four out of five biome classes to high degree of accuracy, including arid, montane, tropical and subtropical closed and open systems, e.g. forests and savanna/grassland. The model has the potential for accurate reconstructions of past biomes and awaits application to fossil pollen sequences. The Random Forest model may be used to investigate vegetation changes on both long and short time scales, e.g. during glacial and interglacial cycles, or more recent and abrupt climatic anomalies like the African Humid Period. Such applications may contribute to a better understanding of past shifts in vegetation cover and ultimately provide valuable information on drivers of climate change.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30138366</pmid><doi>10.1371/journal.pone.0202214</doi><tpages>e0202214</tpages><orcidid>https://orcid.org/0000-0002-8239-399X</orcidid><orcidid>https://orcid.org/0000-0002-2331-6388</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-08, Vol.13 (8), p.e0202214
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2092587544
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Africa
Algorithms
Aridity
Artificial intelligence
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Classification
Classifiers
Climate Change
Computer and Information Sciences
Data processing
Datasets
Decision analysis
Decision Trees
Discriminant Analysis
Earth
Earth science
Earth Sciences
Ecology and Environmental Sciences
Ecosystem
Environmental aspects
Environmental changes
Forests
Fossil pollen
Fossils
Grasslands
Learning algorithms
Logistic Models
Machine learning
Methods
Models, Statistical
Neural networks
Neural Networks, Computer
Open systems
Physical Sciences
Pollen
Pollen - classification
Predictions
Regression analysis
Research and Analysis Methods
Statistical analysis
Statistical methods
Statistics, Nonparametric
Supervised Machine Learning
Support Vector Machine
Support vector machines
Vegetation
Vegetation changes
Vegetation cover
title Predictive pollen-based biome modeling using machine learning
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T23%3A24%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20pollen-based%20biome%20modeling%20using%20machine%20learning&rft.jtitle=PloS%20one&rft.au=Sobol,%20Magdalena%20K&rft.date=2018-08-23&rft.volume=13&rft.issue=8&rft.spage=e0202214&rft.pages=e0202214-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0202214&rft_dat=%3Cgale_plos_%3EA551445770%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2092587544&rft_id=info:pmid/30138366&rft_galeid=A551445770&rft_doaj_id=oai_doaj_org_article_d80a8694a43942d188180aba0b403d68&rfr_iscdi=true