Glucotypes reveal new patterns of glucose dysregulation
Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for qua...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2018-07, Vol.16 (7), p.e2005143 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 7 |
container_start_page | e2005143 |
container_title | PLoS biology |
container_volume | 16 |
creator | Hall, Heather Perelman, Dalia Breschi, Alessandra Limcaoco, Patricia Kellogg, Ryan McLaughlin, Tracey Snyder, Michael |
description | Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for quantifying blood glucose dysregulation in diabetes and prediabetes are limited by reliance on single-time-point measurements or on average measures of overall glycemia and neglect glucose dynamics. We have used continuous glucose monitoring (CGM) to evaluate the frequency with which individuals demonstrate elevations in postprandial glucose, the types of patterns, and how patterns vary between individuals given an identical nutrient challenge. Measurement of insulin resistance and secretion highlights the fact that the physiology underlying dysglycemia is highly variable between individuals. We developed an analytical framework that can group individuals according to specific patterns of glycemic responses called "glucotypes" that reveal heterogeneity, or subphenotypes, within traditional diagnostic categories of glucose regulation. Importantly, we found that even individuals considered normoglycemic by standard measures exhibit high glucose variability using CGM, with glucose levels reaching prediabetic and diabetic ranges 15% and 2% of the time, respectively. We thus show that glucose dysregulation, as characterized by CGM, is more prevalent and heterogeneous than previously thought and can affect individuals considered normoglycemic by standard measures, and specific patterns of glycemic responses reflect variable underlying physiology. The interindividual variability in glycemic responses to standardized meals also highlights the personal nature of glucose regulation. Through extensive phenotyping, we developed a model for identifying potential mechanisms of personal glucose dysregulation and built a webtool for visualizing a user-uploaded CGM profile and classifying individualized glucose patterns into glucotypes. |
doi_str_mv | 10.1371/journal.pbio.2005143 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2089347061</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A548630194</galeid><doaj_id>oai_doaj_org_article_665604ba966e4bdba676e530e732deda</doaj_id><sourcerecordid>A548630194</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-e34f6b26e59e6b7df803a4c00f2019326eb09f1c07d7282ef81cf1c678ec9fee3</originalsourceid><addsrcrecordid>eNqVkstu1DAUhiMEoqXwBggisYHFDL7b2SBVFZSRKipx21qOcxwyysSpnRTm7XGYtGpQFyAvfPvOf3yO_yx7jtEaU4nfbv0YOtOu-7Lxa4IQx4w-yI4xZ3wlleIP76yPsicxbhEipCDqcXZEEWJIEXKcyfN2tH7Y9xDzANdg2ryDn3lvhgFCF3Pv8noiIuTVPgaox9YMje-eZo-caSM8m-eT7NuH91_PPq4uLs83Z6cXKysKPqyAMidKIoAXIEpZOYWoYRYhRxAuaLooUeGwRbKSRBFwCtu0FVKBLRwAPcleHnT71kc91xw1QaqgTCKBE7E5EJU3W92HZmfCXnvT6D8HPtTahKGxLWghuECsNIUQwMqqNEKml1EEkpIKKpO03s3ZxnIHlYVuCKZdiC5vuuaHrv21FohLoVgSeD0LBH81Qhz0rokW2tZ04Mfp3VIQKjDnCX31F3p_dTNVm1RA0zmf8tpJVJ9ypgRNbZzSru-h0qhg11jfgWvS-SLgzSIgMQP8Gmozxqg3Xz7_B_vp39nL70uWHVgbfEzWcrd9xkhPFr9piJ4srmeLp7AXd__oNujG0_Q3GrX1tQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2089347061</pqid></control><display><type>article</type><title>Glucotypes reveal new patterns of glucose dysregulation</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>EZB Electronic Journals Library</source><creator>Hall, Heather ; Perelman, Dalia ; Breschi, Alessandra ; Limcaoco, Patricia ; Kellogg, Ryan ; McLaughlin, Tracey ; Snyder, Michael</creator><creatorcontrib>Hall, Heather ; Perelman, Dalia ; Breschi, Alessandra ; Limcaoco, Patricia ; Kellogg, Ryan ; McLaughlin, Tracey ; Snyder, Michael</creatorcontrib><description>Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for quantifying blood glucose dysregulation in diabetes and prediabetes are limited by reliance on single-time-point measurements or on average measures of overall glycemia and neglect glucose dynamics. We have used continuous glucose monitoring (CGM) to evaluate the frequency with which individuals demonstrate elevations in postprandial glucose, the types of patterns, and how patterns vary between individuals given an identical nutrient challenge. Measurement of insulin resistance and secretion highlights the fact that the physiology underlying dysglycemia is highly variable between individuals. We developed an analytical framework that can group individuals according to specific patterns of glycemic responses called "glucotypes" that reveal heterogeneity, or subphenotypes, within traditional diagnostic categories of glucose regulation. Importantly, we found that even individuals considered normoglycemic by standard measures exhibit high glucose variability using CGM, with glucose levels reaching prediabetic and diabetic ranges 15% and 2% of the time, respectively. We thus show that glucose dysregulation, as characterized by CGM, is more prevalent and heterogeneous than previously thought and can affect individuals considered normoglycemic by standard measures, and specific patterns of glycemic responses reflect variable underlying physiology. The interindividual variability in glycemic responses to standardized meals also highlights the personal nature of glucose regulation. Through extensive phenotyping, we developed a model for identifying potential mechanisms of personal glucose dysregulation and built a webtool for visualizing a user-uploaded CGM profile and classifying individualized glucose patterns into glucotypes.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2005143</identifier><identifier>PMID: 30040822</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Aged ; Biology and Life Sciences ; Blood glucose ; Blood Glucose - metabolism ; Blood Glucose Self-Monitoring ; Carbohydrate Metabolism ; Clustering ; Cohort Studies ; Consumption ; Dextrose ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (non-insulin dependent) ; Diabetes Mellitus, Type 2 - blood ; Diabetes Mellitus, Type 2 - diagnosis ; Diagnostic systems ; Endocrinology ; Female ; Glucose ; Glucose monitoring ; Heterogeneity ; Homeostasis ; Humans ; Hyperglycemia ; Hyperglycemia - blood ; Hyperglycemia - diagnosis ; Insulin ; Insulin - metabolism ; Insulin resistance ; International conferences ; Internet ; Intervention ; Lifestyles ; Male ; Meals ; Medicine and Health Sciences ; Middle Aged ; Phenotyping ; Physiological aspects ; Physiology ; Public health ; Secretion ; Supervision ; Variability ; Visualization</subject><ispartof>PLoS biology, 2018-07, Vol.16 (7), p.e2005143</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Hall et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Hall et al 2018 Hall et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-e34f6b26e59e6b7df803a4c00f2019326eb09f1c07d7282ef81cf1c678ec9fee3</citedby><cites>FETCH-LOGICAL-c695t-e34f6b26e59e6b7df803a4c00f2019326eb09f1c07d7282ef81cf1c678ec9fee3</cites><orcidid>0000-0001-6464-6693</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057684/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6057684/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30040822$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hall, Heather</creatorcontrib><creatorcontrib>Perelman, Dalia</creatorcontrib><creatorcontrib>Breschi, Alessandra</creatorcontrib><creatorcontrib>Limcaoco, Patricia</creatorcontrib><creatorcontrib>Kellogg, Ryan</creatorcontrib><creatorcontrib>McLaughlin, Tracey</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><title>Glucotypes reveal new patterns of glucose dysregulation</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for quantifying blood glucose dysregulation in diabetes and prediabetes are limited by reliance on single-time-point measurements or on average measures of overall glycemia and neglect glucose dynamics. We have used continuous glucose monitoring (CGM) to evaluate the frequency with which individuals demonstrate elevations in postprandial glucose, the types of patterns, and how patterns vary between individuals given an identical nutrient challenge. Measurement of insulin resistance and secretion highlights the fact that the physiology underlying dysglycemia is highly variable between individuals. We developed an analytical framework that can group individuals according to specific patterns of glycemic responses called "glucotypes" that reveal heterogeneity, or subphenotypes, within traditional diagnostic categories of glucose regulation. Importantly, we found that even individuals considered normoglycemic by standard measures exhibit high glucose variability using CGM, with glucose levels reaching prediabetic and diabetic ranges 15% and 2% of the time, respectively. We thus show that glucose dysregulation, as characterized by CGM, is more prevalent and heterogeneous than previously thought and can affect individuals considered normoglycemic by standard measures, and specific patterns of glycemic responses reflect variable underlying physiology. The interindividual variability in glycemic responses to standardized meals also highlights the personal nature of glucose regulation. Through extensive phenotyping, we developed a model for identifying potential mechanisms of personal glucose dysregulation and built a webtool for visualizing a user-uploaded CGM profile and classifying individualized glucose patterns into glucotypes.</description><subject>Adult</subject><subject>Aged</subject><subject>Biology and Life Sciences</subject><subject>Blood glucose</subject><subject>Blood Glucose - metabolism</subject><subject>Blood Glucose Self-Monitoring</subject><subject>Carbohydrate Metabolism</subject><subject>Clustering</subject><subject>Cohort Studies</subject><subject>Consumption</subject><subject>Dextrose</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (non-insulin dependent)</subject><subject>Diabetes Mellitus, Type 2 - blood</subject><subject>Diabetes Mellitus, Type 2 - diagnosis</subject><subject>Diagnostic systems</subject><subject>Endocrinology</subject><subject>Female</subject><subject>Glucose</subject><subject>Glucose monitoring</subject><subject>Heterogeneity</subject><subject>Homeostasis</subject><subject>Humans</subject><subject>Hyperglycemia</subject><subject>Hyperglycemia - blood</subject><subject>Hyperglycemia - diagnosis</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin resistance</subject><subject>International conferences</subject><subject>Internet</subject><subject>Intervention</subject><subject>Lifestyles</subject><subject>Male</subject><subject>Meals</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Phenotyping</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Public health</subject><subject>Secretion</subject><subject>Supervision</subject><subject>Variability</subject><subject>Visualization</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkstu1DAUhiMEoqXwBggisYHFDL7b2SBVFZSRKipx21qOcxwyysSpnRTm7XGYtGpQFyAvfPvOf3yO_yx7jtEaU4nfbv0YOtOu-7Lxa4IQx4w-yI4xZ3wlleIP76yPsicxbhEipCDqcXZEEWJIEXKcyfN2tH7Y9xDzANdg2ryDn3lvhgFCF3Pv8noiIuTVPgaox9YMje-eZo-caSM8m-eT7NuH91_PPq4uLs83Z6cXKysKPqyAMidKIoAXIEpZOYWoYRYhRxAuaLooUeGwRbKSRBFwCtu0FVKBLRwAPcleHnT71kc91xw1QaqgTCKBE7E5EJU3W92HZmfCXnvT6D8HPtTahKGxLWghuECsNIUQwMqqNEKml1EEkpIKKpO03s3ZxnIHlYVuCKZdiC5vuuaHrv21FohLoVgSeD0LBH81Qhz0rokW2tZ04Mfp3VIQKjDnCX31F3p_dTNVm1RA0zmf8tpJVJ9ypgRNbZzSru-h0qhg11jfgWvS-SLgzSIgMQP8Gmozxqg3Xz7_B_vp39nL70uWHVgbfEzWcrd9xkhPFr9piJ4srmeLp7AXd__oNujG0_Q3GrX1tQ</recordid><startdate>20180724</startdate><enddate>20180724</enddate><creator>Hall, Heather</creator><creator>Perelman, Dalia</creator><creator>Breschi, Alessandra</creator><creator>Limcaoco, Patricia</creator><creator>Kellogg, Ryan</creator><creator>McLaughlin, Tracey</creator><creator>Snyder, Michael</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0001-6464-6693</orcidid></search><sort><creationdate>20180724</creationdate><title>Glucotypes reveal new patterns of glucose dysregulation</title><author>Hall, Heather ; Perelman, Dalia ; Breschi, Alessandra ; Limcaoco, Patricia ; Kellogg, Ryan ; McLaughlin, Tracey ; Snyder, Michael</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-e34f6b26e59e6b7df803a4c00f2019326eb09f1c07d7282ef81cf1c678ec9fee3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Aged</topic><topic>Biology and Life Sciences</topic><topic>Blood glucose</topic><topic>Blood Glucose - metabolism</topic><topic>Blood Glucose Self-Monitoring</topic><topic>Carbohydrate Metabolism</topic><topic>Clustering</topic><topic>Cohort Studies</topic><topic>Consumption</topic><topic>Dextrose</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (non-insulin dependent)</topic><topic>Diabetes Mellitus, Type 2 - blood</topic><topic>Diabetes Mellitus, Type 2 - diagnosis</topic><topic>Diagnostic systems</topic><topic>Endocrinology</topic><topic>Female</topic><topic>Glucose</topic><topic>Glucose monitoring</topic><topic>Heterogeneity</topic><topic>Homeostasis</topic><topic>Humans</topic><topic>Hyperglycemia</topic><topic>Hyperglycemia - blood</topic><topic>Hyperglycemia - diagnosis</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin resistance</topic><topic>International conferences</topic><topic>Internet</topic><topic>Intervention</topic><topic>Lifestyles</topic><topic>Male</topic><topic>Meals</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Phenotyping</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Public health</topic><topic>Secretion</topic><topic>Supervision</topic><topic>Variability</topic><topic>Visualization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hall, Heather</creatorcontrib><creatorcontrib>Perelman, Dalia</creatorcontrib><creatorcontrib>Breschi, Alessandra</creatorcontrib><creatorcontrib>Limcaoco, Patricia</creatorcontrib><creatorcontrib>Kellogg, Ryan</creatorcontrib><creatorcontrib>McLaughlin, Tracey</creatorcontrib><creatorcontrib>Snyder, Michael</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Opposing Viewpoints Resource Center</collection><collection>Gale In Context: Canada</collection><collection>Science (Gale in Context)</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Agriculture & Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hall, Heather</au><au>Perelman, Dalia</au><au>Breschi, Alessandra</au><au>Limcaoco, Patricia</au><au>Kellogg, Ryan</au><au>McLaughlin, Tracey</au><au>Snyder, Michael</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Glucotypes reveal new patterns of glucose dysregulation</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-07-24</date><risdate>2018</risdate><volume>16</volume><issue>7</issue><spage>e2005143</spage><pages>e2005143-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Diabetes is an increasing problem worldwide; almost 30 million people, nearly 10% of the population, in the United States are diagnosed with diabetes. Another 84 million are prediabetic, and without intervention, up to 70% of these individuals may progress to type 2 diabetes. Current methods for quantifying blood glucose dysregulation in diabetes and prediabetes are limited by reliance on single-time-point measurements or on average measures of overall glycemia and neglect glucose dynamics. We have used continuous glucose monitoring (CGM) to evaluate the frequency with which individuals demonstrate elevations in postprandial glucose, the types of patterns, and how patterns vary between individuals given an identical nutrient challenge. Measurement of insulin resistance and secretion highlights the fact that the physiology underlying dysglycemia is highly variable between individuals. We developed an analytical framework that can group individuals according to specific patterns of glycemic responses called "glucotypes" that reveal heterogeneity, or subphenotypes, within traditional diagnostic categories of glucose regulation. Importantly, we found that even individuals considered normoglycemic by standard measures exhibit high glucose variability using CGM, with glucose levels reaching prediabetic and diabetic ranges 15% and 2% of the time, respectively. We thus show that glucose dysregulation, as characterized by CGM, is more prevalent and heterogeneous than previously thought and can affect individuals considered normoglycemic by standard measures, and specific patterns of glycemic responses reflect variable underlying physiology. The interindividual variability in glycemic responses to standardized meals also highlights the personal nature of glucose regulation. Through extensive phenotyping, we developed a model for identifying potential mechanisms of personal glucose dysregulation and built a webtool for visualizing a user-uploaded CGM profile and classifying individualized glucose patterns into glucotypes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30040822</pmid><doi>10.1371/journal.pbio.2005143</doi><orcidid>https://orcid.org/0000-0001-6464-6693</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2018-07, Vol.16 (7), p.e2005143 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2089347061 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; PubMed Central; EZB Electronic Journals Library |
subjects | Adult Aged Biology and Life Sciences Blood glucose Blood Glucose - metabolism Blood Glucose Self-Monitoring Carbohydrate Metabolism Clustering Cohort Studies Consumption Dextrose Diabetes Diabetes mellitus Diabetes mellitus (non-insulin dependent) Diabetes Mellitus, Type 2 - blood Diabetes Mellitus, Type 2 - diagnosis Diagnostic systems Endocrinology Female Glucose Glucose monitoring Heterogeneity Homeostasis Humans Hyperglycemia Hyperglycemia - blood Hyperglycemia - diagnosis Insulin Insulin - metabolism Insulin resistance International conferences Internet Intervention Lifestyles Male Meals Medicine and Health Sciences Middle Aged Phenotyping Physiological aspects Physiology Public health Secretion Supervision Variability Visualization |
title | Glucotypes reveal new patterns of glucose dysregulation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-12T00%3A34%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Glucotypes%20reveal%20new%20patterns%20of%20glucose%20dysregulation&rft.jtitle=PLoS%20biology&rft.au=Hall,%20Heather&rft.date=2018-07-24&rft.volume=16&rft.issue=7&rft.spage=e2005143&rft.pages=e2005143-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2005143&rft_dat=%3Cgale_plos_%3EA548630194%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2089347061&rft_id=info:pmid/30040822&rft_galeid=A548630194&rft_doaj_id=oai_doaj_org_article_665604ba966e4bdba676e530e732deda&rfr_iscdi=true |