MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance
Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum p...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-08, Vol.13 (8), p.e0201793-e0201793 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0201793 |
---|---|
container_issue | 8 |
container_start_page | e0201793 |
container_title | PloS one |
container_volume | 13 |
creator | Barceló, Francisca Gomila, Rosa de Paul, Ivan Gili, Xavier Segura, Jaume Pérez-Montaña, Albert Jimenez-Marco, Teresa Sampol, Antonia Portugal, José |
description | Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis. |
doi_str_mv | 10.1371/journal.pone.0201793 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2082109726</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A548655867</galeid><doaj_id>oai_doaj_org_article_9a373eda242340e99d73a99fc5227842</doaj_id><sourcerecordid>A548655867</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5f1a5c69604f7ce0bc040daccdb2d824077450bf140f36a5799eefcc209d8b73</originalsourceid><addsrcrecordid>eNqNk1GL1DAUhYso7jr6D0QLgujDjGnSNs2LMKyuDowM6OBryCQ3nSxtMjapOP_edKe7TGUfpA-9vfnOSXPamyQvM7TICM0-3Li-s6JZHJyFBcIoo4w8Si4zRvC8xIg8Pqsvkmfe3yBUkKosnyYXBCGaIYYvk-O35frTar7dXKciuh298anT6a5xTqUeur5ND50L4FpIpbDxAZSRIQ17GGoPVsIgaJ11snHRIq1F27qDCPvjsNBbBQG61liIhqa2RptoJOF58kSLxsOL8T5Ltteft1df5-vNl9XVcj2XJcNhXuhMFLEsUa6pBLSTKEdKSKl2WFU4R5TmBdrpLEealKKgjAFoKTFiqtpRMkten2wPjfN8DM1zjCocE6C4jMTqRCgnbvihM63ojtwJw28brqu56IKRDXAmCCWgBM4xyREwpigRjGlZYEyr2JwlH8fd-l0LSoINnWgmptMVa_a8dr95iSjOsjwavBsNOverBx94a7yEphEWXH_73oRigkgR0Tf_oA-fbqRqEQ9grHZxXzmY8mWRV2VRVOWQ0uIBKl4KWiPjH6ZN7E8E7yeCyAT4E2rRe89XP77_P7v5OWXfnrF7EE3Ye9f0wTjrp2B-AmXnvO9A34ecIT4MyF0afBgQPg5IlL06_0D3oruJIH8B1KwLww</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082109726</pqid></control><display><type>article</type><title>MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Barceló, Francisca ; Gomila, Rosa ; de Paul, Ivan ; Gili, Xavier ; Segura, Jaume ; Pérez-Montaña, Albert ; Jimenez-Marco, Teresa ; Sampol, Antonia ; Portugal, José</creator><contributor>Roemer, Klaus</contributor><creatorcontrib>Barceló, Francisca ; Gomila, Rosa ; de Paul, Ivan ; Gili, Xavier ; Segura, Jaume ; Pérez-Montaña, Albert ; Jimenez-Marco, Teresa ; Sampol, Antonia ; Portugal, José ; Roemer, Klaus</creatorcontrib><description>Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0201793</identifier><identifier>PMID: 30071092</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Benign monoclonal gammopathy ; Bioinformatics ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Blood serum ; Bone marrow ; Classification ; Complications and side effects ; Computer and Information Sciences ; Diagnosis ; Engineering and Technology ; Gene expression ; Learning algorithms ; Mass spectrometry ; Mass spectroscopy ; Mathematical models ; Medicine and Health Sciences ; Model accuracy ; Monoclonal gammopathies ; Multiple myeloma ; Patients ; Performance prediction ; Physical Sciences ; Predictive control ; Proteins ; Proteomes ; Proteomics ; Research and Analysis Methods ; Risk factors ; Scientific imaging ; Support vector machines</subject><ispartof>PloS one, 2018-08, Vol.13 (8), p.e0201793-e0201793</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Barceló et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Barceló et al 2018 Barceló et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5f1a5c69604f7ce0bc040daccdb2d824077450bf140f36a5799eefcc209d8b73</citedby><cites>FETCH-LOGICAL-c692t-5f1a5c69604f7ce0bc040daccdb2d824077450bf140f36a5799eefcc209d8b73</cites><orcidid>0000-0002-9158-099X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072114/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6072114/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30071092$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Roemer, Klaus</contributor><creatorcontrib>Barceló, Francisca</creatorcontrib><creatorcontrib>Gomila, Rosa</creatorcontrib><creatorcontrib>de Paul, Ivan</creatorcontrib><creatorcontrib>Gili, Xavier</creatorcontrib><creatorcontrib>Segura, Jaume</creatorcontrib><creatorcontrib>Pérez-Montaña, Albert</creatorcontrib><creatorcontrib>Jimenez-Marco, Teresa</creatorcontrib><creatorcontrib>Sampol, Antonia</creatorcontrib><creatorcontrib>Portugal, José</creatorcontrib><title>MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis.</description><subject>Benign monoclonal gammopathy</subject><subject>Bioinformatics</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Blood serum</subject><subject>Bone marrow</subject><subject>Classification</subject><subject>Complications and side effects</subject><subject>Computer and Information Sciences</subject><subject>Diagnosis</subject><subject>Engineering and Technology</subject><subject>Gene expression</subject><subject>Learning algorithms</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Model accuracy</subject><subject>Monoclonal gammopathies</subject><subject>Multiple myeloma</subject><subject>Patients</subject><subject>Performance prediction</subject><subject>Physical Sciences</subject><subject>Predictive control</subject><subject>Proteins</subject><subject>Proteomes</subject><subject>Proteomics</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Scientific imaging</subject><subject>Support vector machines</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1GL1DAUhYso7jr6D0QLgujDjGnSNs2LMKyuDowM6OBryCQ3nSxtMjapOP_edKe7TGUfpA-9vfnOSXPamyQvM7TICM0-3Li-s6JZHJyFBcIoo4w8Si4zRvC8xIg8Pqsvkmfe3yBUkKosnyYXBCGaIYYvk-O35frTar7dXKciuh298anT6a5xTqUeur5ND50L4FpIpbDxAZSRIQ17GGoPVsIgaJ11snHRIq1F27qDCPvjsNBbBQG61liIhqa2RptoJOF58kSLxsOL8T5Ltteft1df5-vNl9XVcj2XJcNhXuhMFLEsUa6pBLSTKEdKSKl2WFU4R5TmBdrpLEealKKgjAFoKTFiqtpRMkten2wPjfN8DM1zjCocE6C4jMTqRCgnbvihM63ojtwJw28brqu56IKRDXAmCCWgBM4xyREwpigRjGlZYEyr2JwlH8fd-l0LSoINnWgmptMVa_a8dr95iSjOsjwavBsNOverBx94a7yEphEWXH_73oRigkgR0Tf_oA-fbqRqEQ9grHZxXzmY8mWRV2VRVOWQ0uIBKl4KWiPjH6ZN7E8E7yeCyAT4E2rRe89XP77_P7v5OWXfnrF7EE3Ye9f0wTjrp2B-AmXnvO9A34ecIT4MyF0afBgQPg5IlL06_0D3oruJIH8B1KwLww</recordid><startdate>20180802</startdate><enddate>20180802</enddate><creator>Barceló, Francisca</creator><creator>Gomila, Rosa</creator><creator>de Paul, Ivan</creator><creator>Gili, Xavier</creator><creator>Segura, Jaume</creator><creator>Pérez-Montaña, Albert</creator><creator>Jimenez-Marco, Teresa</creator><creator>Sampol, Antonia</creator><creator>Portugal, José</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-9158-099X</orcidid></search><sort><creationdate>20180802</creationdate><title>MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance</title><author>Barceló, Francisca ; Gomila, Rosa ; de Paul, Ivan ; Gili, Xavier ; Segura, Jaume ; Pérez-Montaña, Albert ; Jimenez-Marco, Teresa ; Sampol, Antonia ; Portugal, José</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5f1a5c69604f7ce0bc040daccdb2d824077450bf140f36a5799eefcc209d8b73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Benign monoclonal gammopathy</topic><topic>Bioinformatics</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Blood serum</topic><topic>Bone marrow</topic><topic>Classification</topic><topic>Complications and side effects</topic><topic>Computer and Information Sciences</topic><topic>Diagnosis</topic><topic>Engineering and Technology</topic><topic>Gene expression</topic><topic>Learning algorithms</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Model accuracy</topic><topic>Monoclonal gammopathies</topic><topic>Multiple myeloma</topic><topic>Patients</topic><topic>Performance prediction</topic><topic>Physical Sciences</topic><topic>Predictive control</topic><topic>Proteins</topic><topic>Proteomes</topic><topic>Proteomics</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Scientific imaging</topic><topic>Support vector machines</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Barceló, Francisca</creatorcontrib><creatorcontrib>Gomila, Rosa</creatorcontrib><creatorcontrib>de Paul, Ivan</creatorcontrib><creatorcontrib>Gili, Xavier</creatorcontrib><creatorcontrib>Segura, Jaume</creatorcontrib><creatorcontrib>Pérez-Montaña, Albert</creatorcontrib><creatorcontrib>Jimenez-Marco, Teresa</creatorcontrib><creatorcontrib>Sampol, Antonia</creatorcontrib><creatorcontrib>Portugal, José</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Barceló, Francisca</au><au>Gomila, Rosa</au><au>de Paul, Ivan</au><au>Gili, Xavier</au><au>Segura, Jaume</au><au>Pérez-Montaña, Albert</au><au>Jimenez-Marco, Teresa</au><au>Sampol, Antonia</au><au>Portugal, José</au><au>Roemer, Klaus</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-08-02</date><risdate>2018</risdate><volume>13</volume><issue>8</issue><spage>e0201793</spage><epage>e0201793</epage><pages>e0201793-e0201793</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Monoclonal gammopathy of undetermined significance (MGUS) is a plasma cell dyscrasia that can progress to malignant multiple myeloma (MM). Specific molecular biomarkers to classify the MGUS status and discriminate the initial asymptomatic phase of MM have not been identified. We examined the serum peptidome profile of MGUS patients and healthy volunteers using MALDI-TOF mass spectrometry and developed a predictive model for classifying serum samples. The predictive model was built using a support vector machine (SVM) supervised learning method tuned by applying a 20-fold cross-validation scheme. Predicting class labels in a blinded test set containing randomly selected MGUS and healthy control serum samples validated the model. The generalization performance of the predictive model was evaluated by a double cross-validation method that showed 88% average model accuracy, 89% average sensitivity and 86% average specificity. Our model, which classifies unknown serum samples as belonging to either MGUS patients or healthy individuals, can be applied to clinical diagnosis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30071092</pmid><doi>10.1371/journal.pone.0201793</doi><tpages>e0201793</tpages><orcidid>https://orcid.org/0000-0002-9158-099X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-08, Vol.13 (8), p.e0201793-e0201793 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2082109726 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Benign monoclonal gammopathy Bioinformatics Biological markers Biology and Life Sciences Biomarkers Blood serum Bone marrow Classification Complications and side effects Computer and Information Sciences Diagnosis Engineering and Technology Gene expression Learning algorithms Mass spectrometry Mass spectroscopy Mathematical models Medicine and Health Sciences Model accuracy Monoclonal gammopathies Multiple myeloma Patients Performance prediction Physical Sciences Predictive control Proteins Proteomes Proteomics Research and Analysis Methods Risk factors Scientific imaging Support vector machines |
title | MALDI-TOF analysis of blood serum proteome can predict the presence of monoclonal gammopathy of undetermined significance |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-19T00%3A54%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=MALDI-TOF%20analysis%20of%20blood%20serum%20proteome%20can%20predict%20the%20presence%20of%20monoclonal%20gammopathy%20of%20undetermined%20significance&rft.jtitle=PloS%20one&rft.au=Barcel%C3%B3,%20Francisca&rft.date=2018-08-02&rft.volume=13&rft.issue=8&rft.spage=e0201793&rft.epage=e0201793&rft.pages=e0201793-e0201793&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0201793&rft_dat=%3Cgale_plos_%3EA548655867%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082109726&rft_id=info:pmid/30071092&rft_galeid=A548655867&rft_doaj_id=oai_doaj_org_article_9a373eda242340e99d73a99fc5227842&rfr_iscdi=true |