Automatic aortic valve landmark localization in coronary CT angiography using colonial walk

The minimally invasive transcatheter aortic valve implantation (TAVI) is the most prevalent method to treat aortic valve stenosis. For pre-operative surgical planning, contrast-enhanced coronary CT angiography (CCTA) is used as the imaging technique to acquire 3-D measurements of the valve. Accurate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-07, Vol.13 (7), p.e0200317-e0200317
Hauptverfasser: Al, Walid Abdullah, Jung, Ho Yub, Yun, Il Dong, Jang, Yeonggul, Park, Hyung-Bok, Chang, Hyuk-Jae
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0200317
container_issue 7
container_start_page e0200317
container_title PloS one
container_volume 13
creator Al, Walid Abdullah
Jung, Ho Yub
Yun, Il Dong
Jang, Yeonggul
Park, Hyung-Bok
Chang, Hyuk-Jae
description The minimally invasive transcatheter aortic valve implantation (TAVI) is the most prevalent method to treat aortic valve stenosis. For pre-operative surgical planning, contrast-enhanced coronary CT angiography (CCTA) is used as the imaging technique to acquire 3-D measurements of the valve. Accurate localization of the eight aortic valve landmarks in CT images plays a vital role in the TAVI workflow because a small error risks blocking the coronary circulation. In order to examine the valve and mark the landmarks, physicians prefer a view parallel to the hinge plane, instead of using the conventional axial, coronal or sagittal view. However, customizing the view is a difficult and time-consuming task because of unclear aorta pose and different artifacts of CCTA. Therefore, automatic localization of landmarks can serve as a useful guide to the physicians customizing the viewpoint. In this paper, we present an automatic method to localize the aortic valve landmarks using colonial walk, a regression tree-based machine-learning algorithm. For efficient learning from the training set, we propose a two-phase optimized search space learning model in which a representative point inside the valvular area is first learned from the whole CT volume. All eight landmarks are then learned from a smaller area around that point. Experiment with preprocedural CCTA images of TAVI undergoing patients showed that our method is robust under high stenotic variation and notably efficient, as it requires only 12 milliseconds to localize all eight landmarks, as tested on a 3.60 GHz single-core CPU.
doi_str_mv 10.1371/journal.pone.0200317
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2082089261</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A547708766</galeid><doaj_id>oai_doaj_org_article_48c9c9f4e95c43fa8783e2d307089351</doaj_id><sourcerecordid>A547708766</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-aa712b7ad6ebb81ccc06d6aad50912c4f8a582c534367de86fe3bd5093af4933</originalsourceid><addsrcrecordid>eNqNk1GL1DAQx4so3nn6DUQLgngPu6ZJmrQvwrKot3BwoIsvPoTZNO1mL5usSbu6fnpTt3ds5R4khZTMb_6TmcwkycsMTTPCs_cb13kLZrpzVk0RRohk_FFynpUETxhG5PHJ_1nyLIQNQjkpGHuanBGEKC0QPk--z7rWbaHVMgXn-20PZq9SA7bagr9NjZNg9O9IOJtqm0rnnQV_SOfLFGyjXeNhtz6kXdC2iVbjrAaT_gRz-zx5UoMJ6sWwXyTLTx-X86vJ9c3nxXx2PZGsxO0EgGd4xaFiarUqMiklYhUDqHJUZljSuoC8wDInlDBeqYLViqx6I4GaloRcJK-PsjvjghjKEgRGRfxKzLJILI5E5WAjdl7HzA7CgRZ_D5xvBPS5GyVoIUtZ1lSVuaSkhoIXROGKIB61SN5rfRiidautqqSyrQczEh1brF6Lxu0FQ3lJKYsC7wYB7350KrRiq4NUJlZcua6_N2clwrzEEX3zD_pwdgPVQExA29rFuLIXFbOc8nhxzvqw0weouCq11TL2UK3j-cjhcuQQmVb9ahvoQhCLr1_-n735NmbfnrBrBaZdB2e6vsHCGKRHUHoXglf1fZEzJPoRuKuG6EdADCMQ3V6dPtC9013Pkz8qhwF9</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2082089261</pqid></control><display><type>article</type><title>Automatic aortic valve landmark localization in coronary CT angiography using colonial walk</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Al, Walid Abdullah ; Jung, Ho Yub ; Yun, Il Dong ; Jang, Yeonggul ; Park, Hyung-Bok ; Chang, Hyuk-Jae</creator><creatorcontrib>Al, Walid Abdullah ; Jung, Ho Yub ; Yun, Il Dong ; Jang, Yeonggul ; Park, Hyung-Bok ; Chang, Hyuk-Jae</creatorcontrib><description>The minimally invasive transcatheter aortic valve implantation (TAVI) is the most prevalent method to treat aortic valve stenosis. For pre-operative surgical planning, contrast-enhanced coronary CT angiography (CCTA) is used as the imaging technique to acquire 3-D measurements of the valve. Accurate localization of the eight aortic valve landmarks in CT images plays a vital role in the TAVI workflow because a small error risks blocking the coronary circulation. In order to examine the valve and mark the landmarks, physicians prefer a view parallel to the hinge plane, instead of using the conventional axial, coronal or sagittal view. However, customizing the view is a difficult and time-consuming task because of unclear aorta pose and different artifacts of CCTA. Therefore, automatic localization of landmarks can serve as a useful guide to the physicians customizing the viewpoint. In this paper, we present an automatic method to localize the aortic valve landmarks using colonial walk, a regression tree-based machine-learning algorithm. For efficient learning from the training set, we propose a two-phase optimized search space learning model in which a representative point inside the valvular area is first learned from the whole CT volume. All eight landmarks are then learned from a smaller area around that point. Experiment with preprocedural CCTA images of TAVI undergoing patients showed that our method is robust under high stenotic variation and notably efficient, as it requires only 12 milliseconds to localize all eight landmarks, as tested on a 3.60 GHz single-core CPU.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0200317</identifier><identifier>PMID: 30044802</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Anatomic Landmarks - anatomy &amp; histology ; Anatomic Landmarks - diagnostic imaging ; Angiography ; Aorta ; Aortic valve ; Aortic Valve - anatomy &amp; histology ; Aortic Valve - diagnostic imaging ; Aortic valve stenosis ; Artificial intelligence ; Automation ; Biology and Life Sciences ; Cardiology ; Care and treatment ; CAT scans ; Classification ; Computed tomography ; Computed Tomography Angiography - methods ; Computer and Information Sciences ; Coronary circulation ; Coronary vessels ; Data mining ; Distribution ; Engineering ; Engineering and Technology ; Heart ; Heart valve replacement ; Humans ; Implantation ; International conferences ; Knowledge discovery ; Learning algorithms ; Localization ; Machine learning ; Male ; Medical imaging ; Medical personnel ; Medicine ; Medicine and Health Sciences ; Middle Aged ; Pattern recognition ; Physicians ; Prostheses ; Radiography, Interventional - methods ; Regression analysis ; Research and Analysis Methods ; Stenosis ; Surgery ; Transcatheter Aortic Valve Replacement - methods ; Veins &amp; arteries ; Workflow</subject><ispartof>PloS one, 2018-07, Vol.13 (7), p.e0200317-e0200317</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Al et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Al et al 2018 Al et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-aa712b7ad6ebb81ccc06d6aad50912c4f8a582c534367de86fe3bd5093af4933</citedby><cites>FETCH-LOGICAL-c692t-aa712b7ad6ebb81ccc06d6aad50912c4f8a582c534367de86fe3bd5093af4933</cites><orcidid>0000-0002-2906-9170</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6059446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30044802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Al, Walid Abdullah</creatorcontrib><creatorcontrib>Jung, Ho Yub</creatorcontrib><creatorcontrib>Yun, Il Dong</creatorcontrib><creatorcontrib>Jang, Yeonggul</creatorcontrib><creatorcontrib>Park, Hyung-Bok</creatorcontrib><creatorcontrib>Chang, Hyuk-Jae</creatorcontrib><title>Automatic aortic valve landmark localization in coronary CT angiography using colonial walk</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The minimally invasive transcatheter aortic valve implantation (TAVI) is the most prevalent method to treat aortic valve stenosis. For pre-operative surgical planning, contrast-enhanced coronary CT angiography (CCTA) is used as the imaging technique to acquire 3-D measurements of the valve. Accurate localization of the eight aortic valve landmarks in CT images plays a vital role in the TAVI workflow because a small error risks blocking the coronary circulation. In order to examine the valve and mark the landmarks, physicians prefer a view parallel to the hinge plane, instead of using the conventional axial, coronal or sagittal view. However, customizing the view is a difficult and time-consuming task because of unclear aorta pose and different artifacts of CCTA. Therefore, automatic localization of landmarks can serve as a useful guide to the physicians customizing the viewpoint. In this paper, we present an automatic method to localize the aortic valve landmarks using colonial walk, a regression tree-based machine-learning algorithm. For efficient learning from the training set, we propose a two-phase optimized search space learning model in which a representative point inside the valvular area is first learned from the whole CT volume. All eight landmarks are then learned from a smaller area around that point. Experiment with preprocedural CCTA images of TAVI undergoing patients showed that our method is robust under high stenotic variation and notably efficient, as it requires only 12 milliseconds to localize all eight landmarks, as tested on a 3.60 GHz single-core CPU.</description><subject>Algorithms</subject><subject>Anatomic Landmarks - anatomy &amp; histology</subject><subject>Anatomic Landmarks - diagnostic imaging</subject><subject>Angiography</subject><subject>Aorta</subject><subject>Aortic valve</subject><subject>Aortic Valve - anatomy &amp; histology</subject><subject>Aortic Valve - diagnostic imaging</subject><subject>Aortic valve stenosis</subject><subject>Artificial intelligence</subject><subject>Automation</subject><subject>Biology and Life Sciences</subject><subject>Cardiology</subject><subject>Care and treatment</subject><subject>CAT scans</subject><subject>Classification</subject><subject>Computed tomography</subject><subject>Computed Tomography Angiography - methods</subject><subject>Computer and Information Sciences</subject><subject>Coronary circulation</subject><subject>Coronary vessels</subject><subject>Data mining</subject><subject>Distribution</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Heart</subject><subject>Heart valve replacement</subject><subject>Humans</subject><subject>Implantation</subject><subject>International conferences</subject><subject>Knowledge discovery</subject><subject>Learning algorithms</subject><subject>Localization</subject><subject>Machine learning</subject><subject>Male</subject><subject>Medical imaging</subject><subject>Medical personnel</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Pattern recognition</subject><subject>Physicians</subject><subject>Prostheses</subject><subject>Radiography, Interventional - methods</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Stenosis</subject><subject>Surgery</subject><subject>Transcatheter Aortic Valve Replacement - methods</subject><subject>Veins &amp; arteries</subject><subject>Workflow</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk1GL1DAQx4so3nn6DUQLgngPu6ZJmrQvwrKot3BwoIsvPoTZNO1mL5usSbu6fnpTt3ds5R4khZTMb_6TmcwkycsMTTPCs_cb13kLZrpzVk0RRohk_FFynpUETxhG5PHJ_1nyLIQNQjkpGHuanBGEKC0QPk--z7rWbaHVMgXn-20PZq9SA7bagr9NjZNg9O9IOJtqm0rnnQV_SOfLFGyjXeNhtz6kXdC2iVbjrAaT_gRz-zx5UoMJ6sWwXyTLTx-X86vJ9c3nxXx2PZGsxO0EgGd4xaFiarUqMiklYhUDqHJUZljSuoC8wDInlDBeqYLViqx6I4GaloRcJK-PsjvjghjKEgRGRfxKzLJILI5E5WAjdl7HzA7CgRZ_D5xvBPS5GyVoIUtZ1lSVuaSkhoIXROGKIB61SN5rfRiidautqqSyrQczEh1brF6Lxu0FQ3lJKYsC7wYB7350KrRiq4NUJlZcua6_N2clwrzEEX3zD_pwdgPVQExA29rFuLIXFbOc8nhxzvqw0weouCq11TL2UK3j-cjhcuQQmVb9ahvoQhCLr1_-n735NmbfnrBrBaZdB2e6vsHCGKRHUHoXglf1fZEzJPoRuKuG6EdADCMQ3V6dPtC9013Pkz8qhwF9</recordid><startdate>20180725</startdate><enddate>20180725</enddate><creator>Al, Walid Abdullah</creator><creator>Jung, Ho Yub</creator><creator>Yun, Il Dong</creator><creator>Jang, Yeonggul</creator><creator>Park, Hyung-Bok</creator><creator>Chang, Hyuk-Jae</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2906-9170</orcidid></search><sort><creationdate>20180725</creationdate><title>Automatic aortic valve landmark localization in coronary CT angiography using colonial walk</title><author>Al, Walid Abdullah ; Jung, Ho Yub ; Yun, Il Dong ; Jang, Yeonggul ; Park, Hyung-Bok ; Chang, Hyuk-Jae</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-aa712b7ad6ebb81ccc06d6aad50912c4f8a582c534367de86fe3bd5093af4933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Anatomic Landmarks - anatomy &amp; histology</topic><topic>Anatomic Landmarks - diagnostic imaging</topic><topic>Angiography</topic><topic>Aorta</topic><topic>Aortic valve</topic><topic>Aortic Valve - anatomy &amp; histology</topic><topic>Aortic Valve - diagnostic imaging</topic><topic>Aortic valve stenosis</topic><topic>Artificial intelligence</topic><topic>Automation</topic><topic>Biology and Life Sciences</topic><topic>Cardiology</topic><topic>Care and treatment</topic><topic>CAT scans</topic><topic>Classification</topic><topic>Computed tomography</topic><topic>Computed Tomography Angiography - methods</topic><topic>Computer and Information Sciences</topic><topic>Coronary circulation</topic><topic>Coronary vessels</topic><topic>Data mining</topic><topic>Distribution</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Heart</topic><topic>Heart valve replacement</topic><topic>Humans</topic><topic>Implantation</topic><topic>International conferences</topic><topic>Knowledge discovery</topic><topic>Learning algorithms</topic><topic>Localization</topic><topic>Machine learning</topic><topic>Male</topic><topic>Medical imaging</topic><topic>Medical personnel</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Pattern recognition</topic><topic>Physicians</topic><topic>Prostheses</topic><topic>Radiography, Interventional - methods</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Stenosis</topic><topic>Surgery</topic><topic>Transcatheter Aortic Valve Replacement - methods</topic><topic>Veins &amp; arteries</topic><topic>Workflow</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Al, Walid Abdullah</creatorcontrib><creatorcontrib>Jung, Ho Yub</creatorcontrib><creatorcontrib>Yun, Il Dong</creatorcontrib><creatorcontrib>Jang, Yeonggul</creatorcontrib><creatorcontrib>Park, Hyung-Bok</creatorcontrib><creatorcontrib>Chang, Hyuk-Jae</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Al, Walid Abdullah</au><au>Jung, Ho Yub</au><au>Yun, Il Dong</au><au>Jang, Yeonggul</au><au>Park, Hyung-Bok</au><au>Chang, Hyuk-Jae</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Automatic aortic valve landmark localization in coronary CT angiography using colonial walk</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-07-25</date><risdate>2018</risdate><volume>13</volume><issue>7</issue><spage>e0200317</spage><epage>e0200317</epage><pages>e0200317-e0200317</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The minimally invasive transcatheter aortic valve implantation (TAVI) is the most prevalent method to treat aortic valve stenosis. For pre-operative surgical planning, contrast-enhanced coronary CT angiography (CCTA) is used as the imaging technique to acquire 3-D measurements of the valve. Accurate localization of the eight aortic valve landmarks in CT images plays a vital role in the TAVI workflow because a small error risks blocking the coronary circulation. In order to examine the valve and mark the landmarks, physicians prefer a view parallel to the hinge plane, instead of using the conventional axial, coronal or sagittal view. However, customizing the view is a difficult and time-consuming task because of unclear aorta pose and different artifacts of CCTA. Therefore, automatic localization of landmarks can serve as a useful guide to the physicians customizing the viewpoint. In this paper, we present an automatic method to localize the aortic valve landmarks using colonial walk, a regression tree-based machine-learning algorithm. For efficient learning from the training set, we propose a two-phase optimized search space learning model in which a representative point inside the valvular area is first learned from the whole CT volume. All eight landmarks are then learned from a smaller area around that point. Experiment with preprocedural CCTA images of TAVI undergoing patients showed that our method is robust under high stenotic variation and notably efficient, as it requires only 12 milliseconds to localize all eight landmarks, as tested on a 3.60 GHz single-core CPU.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30044802</pmid><doi>10.1371/journal.pone.0200317</doi><orcidid>https://orcid.org/0000-0002-2906-9170</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-07, Vol.13 (7), p.e0200317-e0200317
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2082089261
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Algorithms
Anatomic Landmarks - anatomy & histology
Anatomic Landmarks - diagnostic imaging
Angiography
Aorta
Aortic valve
Aortic Valve - anatomy & histology
Aortic Valve - diagnostic imaging
Aortic valve stenosis
Artificial intelligence
Automation
Biology and Life Sciences
Cardiology
Care and treatment
CAT scans
Classification
Computed tomography
Computed Tomography Angiography - methods
Computer and Information Sciences
Coronary circulation
Coronary vessels
Data mining
Distribution
Engineering
Engineering and Technology
Heart
Heart valve replacement
Humans
Implantation
International conferences
Knowledge discovery
Learning algorithms
Localization
Machine learning
Male
Medical imaging
Medical personnel
Medicine
Medicine and Health Sciences
Middle Aged
Pattern recognition
Physicians
Prostheses
Radiography, Interventional - methods
Regression analysis
Research and Analysis Methods
Stenosis
Surgery
Transcatheter Aortic Valve Replacement - methods
Veins & arteries
Workflow
title Automatic aortic valve landmark localization in coronary CT angiography using colonial walk
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T07%3A33%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Automatic%20aortic%20valve%20landmark%20localization%20in%20coronary%20CT%20angiography%20using%20colonial%20walk&rft.jtitle=PloS%20one&rft.au=Al,%20Walid%20Abdullah&rft.date=2018-07-25&rft.volume=13&rft.issue=7&rft.spage=e0200317&rft.epage=e0200317&rft.pages=e0200317-e0200317&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0200317&rft_dat=%3Cgale_plos_%3EA547708766%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2082089261&rft_id=info:pmid/30044802&rft_galeid=A547708766&rft_doaj_id=oai_doaj_org_article_48c9c9f4e95c43fa8783e2d307089351&rfr_iscdi=true