Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier

Pain recognition is fundamental for safeguarding animal welfare. Facial expressions have been investigated in several species and grimace scales have been developed as pain assessment tool in many species including horses (HGS) and mice (MGS). This study is intended to progress the validation of gri...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-08, Vol.13 (8), p.e0200339
Hauptverfasser: Dalla Costa, Emanuela, Pascuzzo, Riccardo, Leach, Matthew C, Dai, Francesca, Lebelt, Dirk, Vantini, Simone, Minero, Michela
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 8
container_start_page e0200339
container_title PloS one
container_volume 13
creator Dalla Costa, Emanuela
Pascuzzo, Riccardo
Leach, Matthew C
Dai, Francesca
Lebelt, Dirk
Vantini, Simone
Minero, Michela
description Pain recognition is fundamental for safeguarding animal welfare. Facial expressions have been investigated in several species and grimace scales have been developed as pain assessment tool in many species including horses (HGS) and mice (MGS). This study is intended to progress the validation of grimace scales, by proposing a statistical approach to identify a classifier that can estimate the pain status of the animal based on Facial Action Units (FAUs) included in HGS and MGS. To achieve this aim, through a validity study, the relation between FAUs included in HGS and MGS and the real pain condition was investigated. A specific statistical approach (Cumulative Link Mixed Model, Inter-rater reliability, Multiple Correspondence Analysis, Linear Discriminant Analysis and Support Vector Machines) was applied to two datasets. Our results confirm the reliability of both scales and show that individual FAU scores of HGS and MGS are related to the pain state of the animal. Finally, we identified the optimal weights of the FAU scores that can be used to best classify animals in pain with an accuracy greater than 70%. For the first time, this study describes a statistical approach to develop a classifier, based on HGS and MGS, for estimating the pain status of animals. The classifier proposed is the starting point to develop a computer-based image analysis for the automatic recognition of pain in horses and mice.
doi_str_mv 10.1371/journal.pone.0200339
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2081560072</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A548519774</galeid><doaj_id>oai_doaj_org_article_9ef2c40f30f44d66865283e71b9aa206</doaj_id><sourcerecordid>A548519774</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-4a56af962c68ea2ca74ab8ad32dfa96660e73c4a317b7bfa2e7e4c71679ff7003</originalsourceid><addsrcrecordid>eNqNk9uO0zAQhiMEYpeFN0BgCQnBRYtjJ3ZyA6oqDpVWWonTrTV1xo1XaVxsB7Fvj9tmVw3aC5QLn77_t2cmk2XPczrPuczfXbvB99DNd67HOWWUcl4_yM7zmrOZYJQ_PJmfZU9CuKa05JUQj7MzTqmQsqzPM7eEnmy83YJGEjR0GAiGmNYRSWyR7MD2JESIQyBp1jofEgJ9Q7ZW4weyOBzaJEliArudd6BbEh2xDfbRmhsCRHcQgjUW_dPskYEu4LNxvMh-fPr4fflldnn1ebVcXM60LKs4K6AUYGrBtKgQmAZZwLqChrPGQC2EoCi5LoDnci3XBhhKLLTMhayNkSkXF9nLo--uc0GNuQqK0SovBaWSJWJ1JBoH12q3T4G_UQ6sOmw4v1HgU1QdqhoN0wU1nJqiaISoRMkqjjJf1wCMiuT1frxtWG-x0SlwD93EdHrS21Zt3G8lqKR5JZPBm9HAu19DKoDa2qCx66BHNxzezWjNabmP7NU_6P3RjdQmlVTZ3rh0r96bqkVZVGVeS1kkan4Plb4GU3XTj2Vs2p8I3k4EiYn4J25gCEGtvn39f_bq55R9fcK2CF1sg-uGaF0fpmBxBLV3IXg0d0nOqdr3xW021L4v1NgXSfbitEB3ottG4H8BzGoIRQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2081560072</pqid></control><display><type>article</type><title>Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Dalla Costa, Emanuela ; Pascuzzo, Riccardo ; Leach, Matthew C ; Dai, Francesca ; Lebelt, Dirk ; Vantini, Simone ; Minero, Michela</creator><creatorcontrib>Dalla Costa, Emanuela ; Pascuzzo, Riccardo ; Leach, Matthew C ; Dai, Francesca ; Lebelt, Dirk ; Vantini, Simone ; Minero, Michela</creatorcontrib><description>Pain recognition is fundamental for safeguarding animal welfare. Facial expressions have been investigated in several species and grimace scales have been developed as pain assessment tool in many species including horses (HGS) and mice (MGS). This study is intended to progress the validation of grimace scales, by proposing a statistical approach to identify a classifier that can estimate the pain status of the animal based on Facial Action Units (FAUs) included in HGS and MGS. To achieve this aim, through a validity study, the relation between FAUs included in HGS and MGS and the real pain condition was investigated. A specific statistical approach (Cumulative Link Mixed Model, Inter-rater reliability, Multiple Correspondence Analysis, Linear Discriminant Analysis and Support Vector Machines) was applied to two datasets. Our results confirm the reliability of both scales and show that individual FAU scores of HGS and MGS are related to the pain state of the animal. Finally, we identified the optimal weights of the FAU scores that can be used to best classify animals in pain with an accuracy greater than 70%. For the first time, this study describes a statistical approach to develop a classifier, based on HGS and MGS, for estimating the pain status of animals. The classifier proposed is the starting point to develop a computer-based image analysis for the automatic recognition of pain in horses and mice.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0200339</identifier><identifier>PMID: 30067759</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Anesthesia, General ; Anesthetics, Local - administration &amp; dosage ; Animal welfare ; Animals ; Biology and Life Sciences ; Bupivacaine - administration &amp; dosage ; Classification ; Classifiers ; Discriminant Analysis ; Ear - physiology ; Facial Expression ; Horses ; Image analysis ; Image processing ; Laboratories ; Male ; Medicine and Health Sciences ; Methods ; Mice ; Nose - physiology ; Object recognition ; Ostomy ; Pain ; Pain - pathology ; Pain management ; Pain Measurement - methods ; Physical Sciences ; Physiology ; Reliability analysis ; Research and Analysis Methods ; Statistics ; Support Vector Machine ; Support vector machines ; Validity ; Vasectomy</subject><ispartof>PloS one, 2018-08, Vol.13 (8), p.e0200339</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Dalla Costa et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Dalla Costa et al 2018 Dalla Costa et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-4a56af962c68ea2ca74ab8ad32dfa96660e73c4a317b7bfa2e7e4c71679ff7003</citedby><cites>FETCH-LOGICAL-c758t-4a56af962c68ea2ca74ab8ad32dfa96660e73c4a317b7bfa2e7e4c71679ff7003</cites><orcidid>0000-0001-6555-1784 ; 0000-0001-8255-5306 ; 0000-0002-5037-3759</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070187/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6070187/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30067759$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dalla Costa, Emanuela</creatorcontrib><creatorcontrib>Pascuzzo, Riccardo</creatorcontrib><creatorcontrib>Leach, Matthew C</creatorcontrib><creatorcontrib>Dai, Francesca</creatorcontrib><creatorcontrib>Lebelt, Dirk</creatorcontrib><creatorcontrib>Vantini, Simone</creatorcontrib><creatorcontrib>Minero, Michela</creatorcontrib><title>Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Pain recognition is fundamental for safeguarding animal welfare. Facial expressions have been investigated in several species and grimace scales have been developed as pain assessment tool in many species including horses (HGS) and mice (MGS). This study is intended to progress the validation of grimace scales, by proposing a statistical approach to identify a classifier that can estimate the pain status of the animal based on Facial Action Units (FAUs) included in HGS and MGS. To achieve this aim, through a validity study, the relation between FAUs included in HGS and MGS and the real pain condition was investigated. A specific statistical approach (Cumulative Link Mixed Model, Inter-rater reliability, Multiple Correspondence Analysis, Linear Discriminant Analysis and Support Vector Machines) was applied to two datasets. Our results confirm the reliability of both scales and show that individual FAU scores of HGS and MGS are related to the pain state of the animal. Finally, we identified the optimal weights of the FAU scores that can be used to best classify animals in pain with an accuracy greater than 70%. For the first time, this study describes a statistical approach to develop a classifier, based on HGS and MGS, for estimating the pain status of animals. The classifier proposed is the starting point to develop a computer-based image analysis for the automatic recognition of pain in horses and mice.</description><subject>Analysis</subject><subject>Anesthesia, General</subject><subject>Anesthetics, Local - administration &amp; dosage</subject><subject>Animal welfare</subject><subject>Animals</subject><subject>Biology and Life Sciences</subject><subject>Bupivacaine - administration &amp; dosage</subject><subject>Classification</subject><subject>Classifiers</subject><subject>Discriminant Analysis</subject><subject>Ear - physiology</subject><subject>Facial Expression</subject><subject>Horses</subject><subject>Image analysis</subject><subject>Image processing</subject><subject>Laboratories</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Mice</subject><subject>Nose - physiology</subject><subject>Object recognition</subject><subject>Ostomy</subject><subject>Pain</subject><subject>Pain - pathology</subject><subject>Pain management</subject><subject>Pain Measurement - methods</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Reliability analysis</subject><subject>Research and Analysis Methods</subject><subject>Statistics</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Validity</subject><subject>Vasectomy</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9uO0zAQhiMEYpeFN0BgCQnBRYtjJ3ZyA6oqDpVWWonTrTV1xo1XaVxsB7Fvj9tmVw3aC5QLn77_t2cmk2XPczrPuczfXbvB99DNd67HOWWUcl4_yM7zmrOZYJQ_PJmfZU9CuKa05JUQj7MzTqmQsqzPM7eEnmy83YJGEjR0GAiGmNYRSWyR7MD2JESIQyBp1jofEgJ9Q7ZW4weyOBzaJEliArudd6BbEh2xDfbRmhsCRHcQgjUW_dPskYEu4LNxvMh-fPr4fflldnn1ebVcXM60LKs4K6AUYGrBtKgQmAZZwLqChrPGQC2EoCi5LoDnci3XBhhKLLTMhayNkSkXF9nLo--uc0GNuQqK0SovBaWSJWJ1JBoH12q3T4G_UQ6sOmw4v1HgU1QdqhoN0wU1nJqiaISoRMkqjjJf1wCMiuT1frxtWG-x0SlwD93EdHrS21Zt3G8lqKR5JZPBm9HAu19DKoDa2qCx66BHNxzezWjNabmP7NU_6P3RjdQmlVTZ3rh0r96bqkVZVGVeS1kkan4Plb4GU3XTj2Vs2p8I3k4EiYn4J25gCEGtvn39f_bq55R9fcK2CF1sg-uGaF0fpmBxBLV3IXg0d0nOqdr3xW021L4v1NgXSfbitEB3ottG4H8BzGoIRQ</recordid><startdate>20180801</startdate><enddate>20180801</enddate><creator>Dalla Costa, Emanuela</creator><creator>Pascuzzo, Riccardo</creator><creator>Leach, Matthew C</creator><creator>Dai, Francesca</creator><creator>Lebelt, Dirk</creator><creator>Vantini, Simone</creator><creator>Minero, Michela</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6555-1784</orcidid><orcidid>https://orcid.org/0000-0001-8255-5306</orcidid><orcidid>https://orcid.org/0000-0002-5037-3759</orcidid></search><sort><creationdate>20180801</creationdate><title>Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier</title><author>Dalla Costa, Emanuela ; Pascuzzo, Riccardo ; Leach, Matthew C ; Dai, Francesca ; Lebelt, Dirk ; Vantini, Simone ; Minero, Michela</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-4a56af962c68ea2ca74ab8ad32dfa96660e73c4a317b7bfa2e7e4c71679ff7003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Anesthesia, General</topic><topic>Anesthetics, Local - administration &amp; dosage</topic><topic>Animal welfare</topic><topic>Animals</topic><topic>Biology and Life Sciences</topic><topic>Bupivacaine - administration &amp; dosage</topic><topic>Classification</topic><topic>Classifiers</topic><topic>Discriminant Analysis</topic><topic>Ear - physiology</topic><topic>Facial Expression</topic><topic>Horses</topic><topic>Image analysis</topic><topic>Image processing</topic><topic>Laboratories</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Mice</topic><topic>Nose - physiology</topic><topic>Object recognition</topic><topic>Ostomy</topic><topic>Pain</topic><topic>Pain - pathology</topic><topic>Pain management</topic><topic>Pain Measurement - methods</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Reliability analysis</topic><topic>Research and Analysis Methods</topic><topic>Statistics</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Validity</topic><topic>Vasectomy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dalla Costa, Emanuela</creatorcontrib><creatorcontrib>Pascuzzo, Riccardo</creatorcontrib><creatorcontrib>Leach, Matthew C</creatorcontrib><creatorcontrib>Dai, Francesca</creatorcontrib><creatorcontrib>Lebelt, Dirk</creatorcontrib><creatorcontrib>Vantini, Simone</creatorcontrib><creatorcontrib>Minero, Michela</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dalla Costa, Emanuela</au><au>Pascuzzo, Riccardo</au><au>Leach, Matthew C</au><au>Dai, Francesca</au><au>Lebelt, Dirk</au><au>Vantini, Simone</au><au>Minero, Michela</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-08-01</date><risdate>2018</risdate><volume>13</volume><issue>8</issue><spage>e0200339</spage><pages>e0200339-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Pain recognition is fundamental for safeguarding animal welfare. Facial expressions have been investigated in several species and grimace scales have been developed as pain assessment tool in many species including horses (HGS) and mice (MGS). This study is intended to progress the validation of grimace scales, by proposing a statistical approach to identify a classifier that can estimate the pain status of the animal based on Facial Action Units (FAUs) included in HGS and MGS. To achieve this aim, through a validity study, the relation between FAUs included in HGS and MGS and the real pain condition was investigated. A specific statistical approach (Cumulative Link Mixed Model, Inter-rater reliability, Multiple Correspondence Analysis, Linear Discriminant Analysis and Support Vector Machines) was applied to two datasets. Our results confirm the reliability of both scales and show that individual FAU scores of HGS and MGS are related to the pain state of the animal. Finally, we identified the optimal weights of the FAU scores that can be used to best classify animals in pain with an accuracy greater than 70%. For the first time, this study describes a statistical approach to develop a classifier, based on HGS and MGS, for estimating the pain status of animals. The classifier proposed is the starting point to develop a computer-based image analysis for the automatic recognition of pain in horses and mice.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30067759</pmid><doi>10.1371/journal.pone.0200339</doi><orcidid>https://orcid.org/0000-0001-6555-1784</orcidid><orcidid>https://orcid.org/0000-0001-8255-5306</orcidid><orcidid>https://orcid.org/0000-0002-5037-3759</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-08, Vol.13 (8), p.e0200339
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2081560072
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Analysis
Anesthesia, General
Anesthetics, Local - administration & dosage
Animal welfare
Animals
Biology and Life Sciences
Bupivacaine - administration & dosage
Classification
Classifiers
Discriminant Analysis
Ear - physiology
Facial Expression
Horses
Image analysis
Image processing
Laboratories
Male
Medicine and Health Sciences
Methods
Mice
Nose - physiology
Object recognition
Ostomy
Pain
Pain - pathology
Pain management
Pain Measurement - methods
Physical Sciences
Physiology
Reliability analysis
Research and Analysis Methods
Statistics
Support Vector Machine
Support vector machines
Validity
Vasectomy
title Can grimace scales estimate the pain status in horses and mice? A statistical approach to identify a classifier
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-06T16%3A28%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Can%20grimace%20scales%20estimate%20the%20pain%20status%20in%20horses%20and%20mice?%20A%20statistical%20approach%20to%20identify%20a%20classifier&rft.jtitle=PloS%20one&rft.au=Dalla%20Costa,%20Emanuela&rft.date=2018-08-01&rft.volume=13&rft.issue=8&rft.spage=e0200339&rft.pages=e0200339-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0200339&rft_dat=%3Cgale_plos_%3EA548519774%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2081560072&rft_id=info:pmid/30067759&rft_galeid=A548519774&rft_doaj_id=oai_doaj_org_article_9ef2c40f30f44d66865283e71b9aa206&rfr_iscdi=true