Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill

Saddle slip, defined as a progressive lateral displacement of the saddle during ridden exercise, has recently been given attention in the scientific press as a potential sign of lameness. The aim of this study was to objectively quantify the normal lateral movement (oscillations) of the saddle relat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-07, Vol.13 (7), p.e0200534-e0200534
Hauptverfasser: Byström, A, Roepstorff, L, Rhodin, M, Serra Bragança, F, Engell, M T, Hernlund, E, Persson-Sjödin, E, van Weeren, R, Weishaupt, M A, Egenvall, A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0200534
container_issue 7
container_start_page e0200534
container_title PloS one
container_volume 13
creator Byström, A
Roepstorff, L
Rhodin, M
Serra Bragança, F
Engell, M T
Hernlund, E
Persson-Sjödin, E
van Weeren, R
Weishaupt, M A
Egenvall, A
description Saddle slip, defined as a progressive lateral displacement of the saddle during ridden exercise, has recently been given attention in the scientific press as a potential sign of lameness. The aim of this study was to objectively quantify the normal lateral movement (oscillations) of the saddle relative to the horse in non-lame horses, and associate this movement to the movements of the horse and rider. Data from seven Warmblood dressage horses competing at Grand Prix (n = 6) or FEI Intermediate (n = 1) level, ridden by their usual riders, were used. Simultaneous kinetic, kinematic and saddle pressure measurements were conducted during sitting and rising trot on a force-measuring treadmill. The maximum lateral movement of the caudal part of the saddle relative to the horse's spine (MAX) was determined for each diagonal step. A mixed model was applied, with MAX as outcome, and T6 and S3 vertical position, rigid body rotation angles (roll, pitch, yaw) of the horse's and rider's pelvis, vertical ground reaction forces, saddle force, and rider position (rising in rising trot, sitting in rising trot or sitting in sitting trot) as explanatory variables. The least square means for MAX were 14.3 (SE 4.7) mm and 23.9 (SE 4.7) mm for rising and sitting in rising trot, and 20.3 (SE 4.7) mm for sitting trot. A 10 mm increase in maximum pelvic height at push off increased MAX by 1.4 mm (p
doi_str_mv 10.1371/journal.pone.0200534
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2071544872</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546918245</galeid><doaj_id>oai_doaj_org_article_d604ff62f04e4ebeb5daaea29d5e5d79</doaj_id><sourcerecordid>A546918245</sourcerecordid><originalsourceid>FETCH-LOGICAL-c730t-56b63b66ed4b5fa7728e195279c9660aaa4f76942f4ba089c09c768a2fe066ed3</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpLJsixbN4VS9hEIFPZ1K46t40RBtlJJzrZ_PzlJSzx6MQzW4eh5X1uvfZLkZUbmWV5mHzZ2cD2Y-db2OCeUkCJnj5LzTOR0xinJH5_UZ8kz7zcjUnH-NDnLSRSIip4nuISADkza2R122IfUtmlYY-pBKYOpQwNB7zANdt_G20H3cXc73nWfOu11v0qhV6nXIYx1cDa69CnECkF12pjnyZMWjMcXx_Ui-fHp4_frL7PlzefF9dVy1pQ5CbOC1zyvOUfF6qKFsqQVZqKgpWgE5wQAWFtywWjLaiCVaIhoSl4BbZGMqvwieX3w3Rrr5TEhLykps4KxqqSRWBwIZWEjt0534P5IC1ruG9atJLigG4NSccLaltOWMGRYY10oAAQqVIGFKkX0mh28_C_cDvXEzZuhBjcu0qMUnFYs8pfHtxvqDlUT047JT2TTnV6v5cruJCdFxrMqGrw7Gjh7O6APstO-QWOgRzvsz0kjJsiIvvkHfTiNI7WCeGDdtzY-txlN5VXBuMgqyopIzR-g4qWw0038_Vod-xPB-4kgMgF_hxUM3svFt6__z978nLJvT9g1gglrb80QtO39FGQHsHHWe4ftfcgZkeP03KUhx-mRx-mJslenH-hedDcu-V8XThX8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2071544872</pqid></control><display><type>article</type><title>Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Byström, A ; Roepstorff, L ; Rhodin, M ; Serra Bragança, F ; Engell, M T ; Hernlund, E ; Persson-Sjödin, E ; van Weeren, R ; Weishaupt, M A ; Egenvall, A</creator><contributor>Pomeroy, Emma</contributor><creatorcontrib>Byström, A ; Roepstorff, L ; Rhodin, M ; Serra Bragança, F ; Engell, M T ; Hernlund, E ; Persson-Sjödin, E ; van Weeren, R ; Weishaupt, M A ; Egenvall, A ; Sveriges lantbruksuniversitet ; Pomeroy, Emma</creatorcontrib><description>Saddle slip, defined as a progressive lateral displacement of the saddle during ridden exercise, has recently been given attention in the scientific press as a potential sign of lameness. The aim of this study was to objectively quantify the normal lateral movement (oscillations) of the saddle relative to the horse in non-lame horses, and associate this movement to the movements of the horse and rider. Data from seven Warmblood dressage horses competing at Grand Prix (n = 6) or FEI Intermediate (n = 1) level, ridden by their usual riders, were used. Simultaneous kinetic, kinematic and saddle pressure measurements were conducted during sitting and rising trot on a force-measuring treadmill. The maximum lateral movement of the caudal part of the saddle relative to the horse's spine (MAX) was determined for each diagonal step. A mixed model was applied, with MAX as outcome, and T6 and S3 vertical position, rigid body rotation angles (roll, pitch, yaw) of the horse's and rider's pelvis, vertical ground reaction forces, saddle force, and rider position (rising in rising trot, sitting in rising trot or sitting in sitting trot) as explanatory variables. The least square means for MAX were 14.3 (SE 4.7) mm and 23.9 (SE 4.7) mm for rising and sitting in rising trot, and 20.3 (SE 4.7) mm for sitting trot. A 10 mm increase in maximum pelvic height at push off increased MAX by 1.4 mm (p&lt;0.0001). One degree increase in rider pelvis roll decreased MAX 1.1 mm, and one degree increase in rider pelvis yaw increased MAX 0.7 mm (both p&lt;0.0001). The linear relationships found between MAX and movements of both horse and rider implies that both horse and rider movement asymmetries are reflected in the lateral movements or oscillations of the saddle in non-lame horses.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0200534</identifier><identifier>PMID: 30020982</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anatomy &amp; physiology ; Animal sciences ; Asymmetry ; Biochemistry ; Biology and Life Sciences ; Biomechanics ; Care and treatment ; Fitness equipment ; Horse sports ; Horses ; Kinematics ; Lateral displacement ; Medical Bioscience ; Medicine and Health Sciences ; Medicinsk biovetenskap ; Observational studies ; Oscillations ; Pelvis ; Physical Sciences ; Physiology ; Pitch (inclination) ; Pressure measurement ; Research and Analysis Methods ; Rigid structures ; Rigid-body dynamics ; Rolling motion ; Rotating bodies ; Spine ; Studies ; Treadmill exercise tests ; Treadmills ; Vertical forces ; Vertical orientation ; Veterinary medicine ; Yaw ; Zoology</subject><ispartof>PloS one, 2018-07, Vol.13 (7), p.e0200534-e0200534</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Byström et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Byström et al 2018 Byström et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c730t-56b63b66ed4b5fa7728e195279c9660aaa4f76942f4ba089c09c768a2fe066ed3</citedby><cites>FETCH-LOGICAL-c730t-56b63b66ed4b5fa7728e195279c9660aaa4f76942f4ba089c09c768a2fe066ed3</cites><orcidid>0000-0002-2008-8244</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051618/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6051618/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23868,27926,27927,53793,53795</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30020982$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://res.slu.se/id/publ/96284$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Pomeroy, Emma</contributor><creatorcontrib>Byström, A</creatorcontrib><creatorcontrib>Roepstorff, L</creatorcontrib><creatorcontrib>Rhodin, M</creatorcontrib><creatorcontrib>Serra Bragança, F</creatorcontrib><creatorcontrib>Engell, M T</creatorcontrib><creatorcontrib>Hernlund, E</creatorcontrib><creatorcontrib>Persson-Sjödin, E</creatorcontrib><creatorcontrib>van Weeren, R</creatorcontrib><creatorcontrib>Weishaupt, M A</creatorcontrib><creatorcontrib>Egenvall, A</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><title>Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Saddle slip, defined as a progressive lateral displacement of the saddle during ridden exercise, has recently been given attention in the scientific press as a potential sign of lameness. The aim of this study was to objectively quantify the normal lateral movement (oscillations) of the saddle relative to the horse in non-lame horses, and associate this movement to the movements of the horse and rider. Data from seven Warmblood dressage horses competing at Grand Prix (n = 6) or FEI Intermediate (n = 1) level, ridden by their usual riders, were used. Simultaneous kinetic, kinematic and saddle pressure measurements were conducted during sitting and rising trot on a force-measuring treadmill. The maximum lateral movement of the caudal part of the saddle relative to the horse's spine (MAX) was determined for each diagonal step. A mixed model was applied, with MAX as outcome, and T6 and S3 vertical position, rigid body rotation angles (roll, pitch, yaw) of the horse's and rider's pelvis, vertical ground reaction forces, saddle force, and rider position (rising in rising trot, sitting in rising trot or sitting in sitting trot) as explanatory variables. The least square means for MAX were 14.3 (SE 4.7) mm and 23.9 (SE 4.7) mm for rising and sitting in rising trot, and 20.3 (SE 4.7) mm for sitting trot. A 10 mm increase in maximum pelvic height at push off increased MAX by 1.4 mm (p&lt;0.0001). One degree increase in rider pelvis roll decreased MAX 1.1 mm, and one degree increase in rider pelvis yaw increased MAX 0.7 mm (both p&lt;0.0001). The linear relationships found between MAX and movements of both horse and rider implies that both horse and rider movement asymmetries are reflected in the lateral movements or oscillations of the saddle in non-lame horses.</description><subject>Anatomy &amp; physiology</subject><subject>Animal sciences</subject><subject>Asymmetry</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biomechanics</subject><subject>Care and treatment</subject><subject>Fitness equipment</subject><subject>Horse sports</subject><subject>Horses</subject><subject>Kinematics</subject><subject>Lateral displacement</subject><subject>Medical Bioscience</subject><subject>Medicine and Health Sciences</subject><subject>Medicinsk biovetenskap</subject><subject>Observational studies</subject><subject>Oscillations</subject><subject>Pelvis</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Pitch (inclination)</subject><subject>Pressure measurement</subject><subject>Research and Analysis Methods</subject><subject>Rigid structures</subject><subject>Rigid-body dynamics</subject><subject>Rolling motion</subject><subject>Rotating bodies</subject><subject>Spine</subject><subject>Studies</subject><subject>Treadmill exercise tests</subject><subject>Treadmills</subject><subject>Vertical forces</subject><subject>Vertical orientation</subject><subject>Veterinary medicine</subject><subject>Yaw</subject><subject>Zoology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpLJsixbN4VS9hEIFPZ1K46t40RBtlJJzrZ_PzlJSzx6MQzW4eh5X1uvfZLkZUbmWV5mHzZ2cD2Y-db2OCeUkCJnj5LzTOR0xinJH5_UZ8kz7zcjUnH-NDnLSRSIip4nuISADkza2R122IfUtmlYY-pBKYOpQwNB7zANdt_G20H3cXc73nWfOu11v0qhV6nXIYx1cDa69CnECkF12pjnyZMWjMcXx_Ui-fHp4_frL7PlzefF9dVy1pQ5CbOC1zyvOUfF6qKFsqQVZqKgpWgE5wQAWFtywWjLaiCVaIhoSl4BbZGMqvwieX3w3Rrr5TEhLykps4KxqqSRWBwIZWEjt0534P5IC1ruG9atJLigG4NSccLaltOWMGRYY10oAAQqVIGFKkX0mh28_C_cDvXEzZuhBjcu0qMUnFYs8pfHtxvqDlUT047JT2TTnV6v5cruJCdFxrMqGrw7Gjh7O6APstO-QWOgRzvsz0kjJsiIvvkHfTiNI7WCeGDdtzY-txlN5VXBuMgqyopIzR-g4qWw0038_Vod-xPB-4kgMgF_hxUM3svFt6__z978nLJvT9g1gglrb80QtO39FGQHsHHWe4ftfcgZkeP03KUhx-mRx-mJslenH-hedDcu-V8XThX8</recordid><startdate>20180718</startdate><enddate>20180718</enddate><creator>Byström, A</creator><creator>Roepstorff, L</creator><creator>Rhodin, M</creator><creator>Serra Bragança, F</creator><creator>Engell, M T</creator><creator>Hernlund, E</creator><creator>Persson-Sjödin, E</creator><creator>van Weeren, R</creator><creator>Weishaupt, M A</creator><creator>Egenvall, A</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2008-8244</orcidid></search><sort><creationdate>20180718</creationdate><title>Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill</title><author>Byström, A ; Roepstorff, L ; Rhodin, M ; Serra Bragança, F ; Engell, M T ; Hernlund, E ; Persson-Sjödin, E ; van Weeren, R ; Weishaupt, M A ; Egenvall, A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c730t-56b63b66ed4b5fa7728e195279c9660aaa4f76942f4ba089c09c768a2fe066ed3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatomy &amp; physiology</topic><topic>Animal sciences</topic><topic>Asymmetry</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biomechanics</topic><topic>Care and treatment</topic><topic>Fitness equipment</topic><topic>Horse sports</topic><topic>Horses</topic><topic>Kinematics</topic><topic>Lateral displacement</topic><topic>Medical Bioscience</topic><topic>Medicine and Health Sciences</topic><topic>Medicinsk biovetenskap</topic><topic>Observational studies</topic><topic>Oscillations</topic><topic>Pelvis</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Pitch (inclination)</topic><topic>Pressure measurement</topic><topic>Research and Analysis Methods</topic><topic>Rigid structures</topic><topic>Rigid-body dynamics</topic><topic>Rolling motion</topic><topic>Rotating bodies</topic><topic>Spine</topic><topic>Studies</topic><topic>Treadmill exercise tests</topic><topic>Treadmills</topic><topic>Vertical forces</topic><topic>Vertical orientation</topic><topic>Veterinary medicine</topic><topic>Yaw</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Byström, A</creatorcontrib><creatorcontrib>Roepstorff, L</creatorcontrib><creatorcontrib>Rhodin, M</creatorcontrib><creatorcontrib>Serra Bragança, F</creatorcontrib><creatorcontrib>Engell, M T</creatorcontrib><creatorcontrib>Hernlund, E</creatorcontrib><creatorcontrib>Persson-Sjödin, E</creatorcontrib><creatorcontrib>van Weeren, R</creatorcontrib><creatorcontrib>Weishaupt, M A</creatorcontrib><creatorcontrib>Egenvall, A</creatorcontrib><creatorcontrib>Sveriges lantbruksuniversitet</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Byström, A</au><au>Roepstorff, L</au><au>Rhodin, M</au><au>Serra Bragança, F</au><au>Engell, M T</au><au>Hernlund, E</au><au>Persson-Sjödin, E</au><au>van Weeren, R</au><au>Weishaupt, M A</au><au>Egenvall, A</au><au>Pomeroy, Emma</au><aucorp>Sveriges lantbruksuniversitet</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-07-18</date><risdate>2018</risdate><volume>13</volume><issue>7</issue><spage>e0200534</spage><epage>e0200534</epage><pages>e0200534-e0200534</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Saddle slip, defined as a progressive lateral displacement of the saddle during ridden exercise, has recently been given attention in the scientific press as a potential sign of lameness. The aim of this study was to objectively quantify the normal lateral movement (oscillations) of the saddle relative to the horse in non-lame horses, and associate this movement to the movements of the horse and rider. Data from seven Warmblood dressage horses competing at Grand Prix (n = 6) or FEI Intermediate (n = 1) level, ridden by their usual riders, were used. Simultaneous kinetic, kinematic and saddle pressure measurements were conducted during sitting and rising trot on a force-measuring treadmill. The maximum lateral movement of the caudal part of the saddle relative to the horse's spine (MAX) was determined for each diagonal step. A mixed model was applied, with MAX as outcome, and T6 and S3 vertical position, rigid body rotation angles (roll, pitch, yaw) of the horse's and rider's pelvis, vertical ground reaction forces, saddle force, and rider position (rising in rising trot, sitting in rising trot or sitting in sitting trot) as explanatory variables. The least square means for MAX were 14.3 (SE 4.7) mm and 23.9 (SE 4.7) mm for rising and sitting in rising trot, and 20.3 (SE 4.7) mm for sitting trot. A 10 mm increase in maximum pelvic height at push off increased MAX by 1.4 mm (p&lt;0.0001). One degree increase in rider pelvis roll decreased MAX 1.1 mm, and one degree increase in rider pelvis yaw increased MAX 0.7 mm (both p&lt;0.0001). The linear relationships found between MAX and movements of both horse and rider implies that both horse and rider movement asymmetries are reflected in the lateral movements or oscillations of the saddle in non-lame horses.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>30020982</pmid><doi>10.1371/journal.pone.0200534</doi><orcidid>https://orcid.org/0000-0002-2008-8244</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-07, Vol.13 (7), p.e0200534-e0200534
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2071544872
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry
subjects Anatomy & physiology
Animal sciences
Asymmetry
Biochemistry
Biology and Life Sciences
Biomechanics
Care and treatment
Fitness equipment
Horse sports
Horses
Kinematics
Lateral displacement
Medical Bioscience
Medicine and Health Sciences
Medicinsk biovetenskap
Observational studies
Oscillations
Pelvis
Physical Sciences
Physiology
Pitch (inclination)
Pressure measurement
Research and Analysis Methods
Rigid structures
Rigid-body dynamics
Rolling motion
Rotating bodies
Spine
Studies
Treadmill exercise tests
Treadmills
Vertical forces
Vertical orientation
Veterinary medicine
Yaw
Zoology
title Lateral movement of the saddle relative to the equine spine in rising and sitting trot on a treadmill
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T06%3A08%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Lateral%20movement%20of%20the%20saddle%20relative%20to%20the%20equine%20spine%20in%20rising%20and%20sitting%20trot%20on%20a%20treadmill&rft.jtitle=PloS%20one&rft.au=Bystr%C3%B6m,%20A&rft.aucorp=Sveriges%20lantbruksuniversitet&rft.date=2018-07-18&rft.volume=13&rft.issue=7&rft.spage=e0200534&rft.epage=e0200534&rft.pages=e0200534-e0200534&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0200534&rft_dat=%3Cgale_plos_%3EA546918245%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2071544872&rft_id=info:pmid/30020982&rft_galeid=A546918245&rft_doaj_id=oai_doaj_org_article_d604ff62f04e4ebeb5daaea29d5e5d79&rfr_iscdi=true