Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency

In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2018-06, Vol.14 (6), p.e1007476-e1007476
Hauptverfasser: Ramos-Alonso, Lucía, Romero, Antonia María, Soler, Maria Àngel, Perea-García, Ana, Alepuz, Paula, Puig, Sergi, Martínez-Pastor, María Teresa
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007476
container_issue 6
container_start_page e1007476
container_title PLoS genetics
container_volume 14
creator Ramos-Alonso, Lucía
Romero, Antonia María
Soler, Maria Àngel
Perea-García, Ana
Alepuz, Paula
Puig, Sergi
Martínez-Pastor, María Teresa
description In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.
doi_str_mv 10.1371/journal.pgen.1007476
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2070862025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A544991972</galeid><doaj_id>oai_doaj_org_article_57293f8be329410882ac36129b64ff6d</doaj_id><sourcerecordid>A544991972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</originalsourceid><addsrcrecordid>eNqVk1-L1DAUxYso7jr6DUQLgujDjEnaJs2LMAyrDiy7MP4Bn0Ka3nSydJJu0or77U13Zpep7IOSh5b0d85N7ulNkpcYLXDG8IcrN3gr20XXgF1ghFjO6KPkFBdFNmc5yh8fvZ8kz0K4QigrSs6eJieEc0xKlp8m6ifI0KerfkvSzrsejE09dB5CgJD2W0h7L21oZW-cTZ1Ol5uzuXK2l8Ya26S7zcUypLei0DkbIu9S4yNbgzbKgFU3z5MnWrYBXhyes-T7p7Nvqy_z88vP69XyfK4Yof08y7DKMRBFkGJ1XkJBeElwxWtaVxViJdVcE4kRlxXFNS10WQPUtSa0qqgqslnyeu_btS6IQ3-CIIihkhJERmK9J2onr0TnzU76G-GkEbcbzjdC-t6oFkTBCM90WUFGeI5RWRKpMooJr2iuNa2j18dDtaHaQa3Axk61E9PpF2u2onG_BEUkG9cseXcw8O56gNCLnQkK2lZacMN47oJhXOacR_TNX-jDtztQjYwXMFa7WFeNpmJZ5NEHczaWXTxAxVXDzsRkY2xxfyJ4PxGM6cPvvpFDCGL9dfMf7MW_s5c_puzbI3YLsu23wbXD-FeGKZjvQeVdCB70fSAYiXFu7jonxrkRh7mJslfHYd6L7gYl-wMxfxGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070862025</pqid></control><display><type>article</type><title>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ramos-Alonso, Lucía ; Romero, Antonia María ; Soler, Maria Àngel ; Perea-García, Ana ; Alepuz, Paula ; Puig, Sergi ; Martínez-Pastor, María Teresa</creator><contributor>Gerber, André Paul</contributor><creatorcontrib>Ramos-Alonso, Lucía ; Romero, Antonia María ; Soler, Maria Àngel ; Perea-García, Ana ; Alepuz, Paula ; Puig, Sergi ; Martínez-Pastor, María Teresa ; Gerber, André Paul</creatorcontrib><description>In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007476</identifier><identifier>PMID: 29912874</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Biological - genetics ; AU Rich Elements ; Biodegradation ; Biology and life sciences ; Dehydrogenases ; DNA-Binding Proteins - genetics ; Funding ; Gene expression ; Gene Expression Regulation, Fungal ; Genetic aspects ; Investigations ; Iron ; Iron - deficiency ; Iron - metabolism ; Iron deficiency diseases ; Kinases ; Medicine and Health Sciences ; Messenger RNA ; Metabolism ; Metabolites ; mRNA turnover ; Nutrient deficiency ; Physiological aspects ; Proteins ; Regulatory Sequences, Ribonucleic Acid ; Research and analysis methods ; Respiration ; Ribonucleotide reductase ; RNA Stability - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-function relationships ; Succinate dehydrogenase ; Transcription Factors - genetics ; Translation ; Translation (Genetics) ; Tristetraprolin - genetics ; Tristetraprolin - metabolism ; Yeast ; Zinc finger proteins</subject><ispartof>PLoS genetics, 2018-06, Vol.14 (6), p.e1007476-e1007476</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Ramos-Alonso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Ramos-Alonso et al 2018 Ramos-Alonso et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</citedby><cites>FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</cites><orcidid>0000-0002-4128-958X ; 0000-0002-1856-490X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023232/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023232/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29912874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gerber, André Paul</contributor><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Romero, Antonia María</creatorcontrib><creatorcontrib>Soler, Maria Àngel</creatorcontrib><creatorcontrib>Perea-García, Ana</creatorcontrib><creatorcontrib>Alepuz, Paula</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><title>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.</description><subject>Adaptation, Biological - genetics</subject><subject>AU Rich Elements</subject><subject>Biodegradation</subject><subject>Biology and life sciences</subject><subject>Dehydrogenases</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic aspects</subject><subject>Investigations</subject><subject>Iron</subject><subject>Iron - deficiency</subject><subject>Iron - metabolism</subject><subject>Iron deficiency diseases</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mRNA turnover</subject><subject>Nutrient deficiency</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Regulatory Sequences, Ribonucleic Acid</subject><subject>Research and analysis methods</subject><subject>Respiration</subject><subject>Ribonucleotide reductase</subject><subject>RNA Stability - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-function relationships</subject><subject>Succinate dehydrogenase</subject><subject>Transcription Factors - genetics</subject><subject>Translation</subject><subject>Translation (Genetics)</subject><subject>Tristetraprolin - genetics</subject><subject>Tristetraprolin - metabolism</subject><subject>Yeast</subject><subject>Zinc finger proteins</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1-L1DAUxYso7jr6DUQLgujDjEnaJs2LMAyrDiy7MP4Bn0Ka3nSydJJu0or77U13Zpep7IOSh5b0d85N7ulNkpcYLXDG8IcrN3gr20XXgF1ghFjO6KPkFBdFNmc5yh8fvZ8kz0K4QigrSs6eJieEc0xKlp8m6ifI0KerfkvSzrsejE09dB5CgJD2W0h7L21oZW-cTZ1Ol5uzuXK2l8Ya26S7zcUypLei0DkbIu9S4yNbgzbKgFU3z5MnWrYBXhyes-T7p7Nvqy_z88vP69XyfK4Yof08y7DKMRBFkGJ1XkJBeElwxWtaVxViJdVcE4kRlxXFNS10WQPUtSa0qqgqslnyeu_btS6IQ3-CIIihkhJERmK9J2onr0TnzU76G-GkEbcbzjdC-t6oFkTBCM90WUFGeI5RWRKpMooJr2iuNa2j18dDtaHaQa3Axk61E9PpF2u2onG_BEUkG9cseXcw8O56gNCLnQkK2lZacMN47oJhXOacR_TNX-jDtztQjYwXMFa7WFeNpmJZ5NEHczaWXTxAxVXDzsRkY2xxfyJ4PxGM6cPvvpFDCGL9dfMf7MW_s5c_puzbI3YLsu23wbXD-FeGKZjvQeVdCB70fSAYiXFu7jonxrkRh7mJslfHYd6L7gYl-wMxfxGA</recordid><startdate>20180618</startdate><enddate>20180618</enddate><creator>Ramos-Alonso, Lucía</creator><creator>Romero, Antonia María</creator><creator>Soler, Maria Àngel</creator><creator>Perea-García, Ana</creator><creator>Alepuz, Paula</creator><creator>Puig, Sergi</creator><creator>Martínez-Pastor, María Teresa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid></search><sort><creationdate>20180618</creationdate><title>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</title><author>Ramos-Alonso, Lucía ; Romero, Antonia María ; Soler, Maria Àngel ; Perea-García, Ana ; Alepuz, Paula ; Puig, Sergi ; Martínez-Pastor, María Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation, Biological - genetics</topic><topic>AU Rich Elements</topic><topic>Biodegradation</topic><topic>Biology and life sciences</topic><topic>Dehydrogenases</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic aspects</topic><topic>Investigations</topic><topic>Iron</topic><topic>Iron - deficiency</topic><topic>Iron - metabolism</topic><topic>Iron deficiency diseases</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mRNA turnover</topic><topic>Nutrient deficiency</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Regulatory Sequences, Ribonucleic Acid</topic><topic>Research and analysis methods</topic><topic>Respiration</topic><topic>Ribonucleotide reductase</topic><topic>RNA Stability - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-function relationships</topic><topic>Succinate dehydrogenase</topic><topic>Transcription Factors - genetics</topic><topic>Translation</topic><topic>Translation (Genetics)</topic><topic>Tristetraprolin - genetics</topic><topic>Tristetraprolin - metabolism</topic><topic>Yeast</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Romero, Antonia María</creatorcontrib><creatorcontrib>Soler, Maria Àngel</creatorcontrib><creatorcontrib>Perea-García, Ana</creatorcontrib><creatorcontrib>Alepuz, Paula</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Alonso, Lucía</au><au>Romero, Antonia María</au><au>Soler, Maria Àngel</au><au>Perea-García, Ana</au><au>Alepuz, Paula</au><au>Puig, Sergi</au><au>Martínez-Pastor, María Teresa</au><au>Gerber, André Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-06-18</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>e1007476</spage><epage>e1007476</epage><pages>e1007476-e1007476</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29912874</pmid><doi>10.1371/journal.pgen.1007476</doi><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2018-06, Vol.14 (6), p.e1007476-e1007476
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2070862025
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adaptation, Biological - genetics
AU Rich Elements
Biodegradation
Biology and life sciences
Dehydrogenases
DNA-Binding Proteins - genetics
Funding
Gene expression
Gene Expression Regulation, Fungal
Genetic aspects
Investigations
Iron
Iron - deficiency
Iron - metabolism
Iron deficiency diseases
Kinases
Medicine and Health Sciences
Messenger RNA
Metabolism
Metabolites
mRNA turnover
Nutrient deficiency
Physiological aspects
Proteins
Regulatory Sequences, Ribonucleic Acid
Research and analysis methods
Respiration
Ribonucleotide reductase
RNA Stability - genetics
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Structure-function relationships
Succinate dehydrogenase
Transcription Factors - genetics
Translation
Translation (Genetics)
Tristetraprolin - genetics
Tristetraprolin - metabolism
Yeast
Zinc finger proteins
title Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20Cth2%20protein%20represses%20the%20translation%20of%20ARE-containing%20mRNAs%20in%20response%20to%20iron%20deficiency&rft.jtitle=PLoS%20genetics&rft.au=Ramos-Alonso,%20Luc%C3%ADa&rft.date=2018-06-18&rft.volume=14&rft.issue=6&rft.spage=e1007476&rft.epage=e1007476&rft.pages=e1007476-e1007476&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007476&rft_dat=%3Cgale_plos_%3EA544991972%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070862025&rft_id=info:pmid/29912874&rft_galeid=A544991972&rft_doaj_id=oai_doaj_org_article_57293f8be329410882ac36129b64ff6d&rfr_iscdi=true