Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency
In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-06, Vol.14 (6), p.e1007476-e1007476 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007476 |
---|---|
container_issue | 6 |
container_start_page | e1007476 |
container_title | PLoS genetics |
container_volume | 14 |
creator | Ramos-Alonso, Lucía Romero, Antonia María Soler, Maria Àngel Perea-García, Ana Alepuz, Paula Puig, Sergi Martínez-Pastor, María Teresa |
description | In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency. |
doi_str_mv | 10.1371/journal.pgen.1007476 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2070862025</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A544991972</galeid><doaj_id>oai_doaj_org_article_57293f8be329410882ac36129b64ff6d</doaj_id><sourcerecordid>A544991972</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</originalsourceid><addsrcrecordid>eNqVk1-L1DAUxYso7jr6DUQLgujDjEnaJs2LMAyrDiy7MP4Bn0Ka3nSydJJu0or77U13Zpep7IOSh5b0d85N7ulNkpcYLXDG8IcrN3gr20XXgF1ghFjO6KPkFBdFNmc5yh8fvZ8kz0K4QigrSs6eJieEc0xKlp8m6ifI0KerfkvSzrsejE09dB5CgJD2W0h7L21oZW-cTZ1Ol5uzuXK2l8Ya26S7zcUypLei0DkbIu9S4yNbgzbKgFU3z5MnWrYBXhyes-T7p7Nvqy_z88vP69XyfK4Yof08y7DKMRBFkGJ1XkJBeElwxWtaVxViJdVcE4kRlxXFNS10WQPUtSa0qqgqslnyeu_btS6IQ3-CIIihkhJERmK9J2onr0TnzU76G-GkEbcbzjdC-t6oFkTBCM90WUFGeI5RWRKpMooJr2iuNa2j18dDtaHaQa3Axk61E9PpF2u2onG_BEUkG9cseXcw8O56gNCLnQkK2lZacMN47oJhXOacR_TNX-jDtztQjYwXMFa7WFeNpmJZ5NEHczaWXTxAxVXDzsRkY2xxfyJ4PxGM6cPvvpFDCGL9dfMf7MW_s5c_puzbI3YLsu23wbXD-FeGKZjvQeVdCB70fSAYiXFu7jonxrkRh7mJslfHYd6L7gYl-wMxfxGA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070862025</pqid></control><display><type>article</type><title>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Ramos-Alonso, Lucía ; Romero, Antonia María ; Soler, Maria Àngel ; Perea-García, Ana ; Alepuz, Paula ; Puig, Sergi ; Martínez-Pastor, María Teresa</creator><contributor>Gerber, André Paul</contributor><creatorcontrib>Ramos-Alonso, Lucía ; Romero, Antonia María ; Soler, Maria Àngel ; Perea-García, Ana ; Alepuz, Paula ; Puig, Sergi ; Martínez-Pastor, María Teresa ; Gerber, André Paul</creatorcontrib><description>In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007476</identifier><identifier>PMID: 29912874</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adaptation, Biological - genetics ; AU Rich Elements ; Biodegradation ; Biology and life sciences ; Dehydrogenases ; DNA-Binding Proteins - genetics ; Funding ; Gene expression ; Gene Expression Regulation, Fungal ; Genetic aspects ; Investigations ; Iron ; Iron - deficiency ; Iron - metabolism ; Iron deficiency diseases ; Kinases ; Medicine and Health Sciences ; Messenger RNA ; Metabolism ; Metabolites ; mRNA turnover ; Nutrient deficiency ; Physiological aspects ; Proteins ; Regulatory Sequences, Ribonucleic Acid ; Research and analysis methods ; Respiration ; Ribonucleotide reductase ; RNA Stability - genetics ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Structure-function relationships ; Succinate dehydrogenase ; Transcription Factors - genetics ; Translation ; Translation (Genetics) ; Tristetraprolin - genetics ; Tristetraprolin - metabolism ; Yeast ; Zinc finger proteins</subject><ispartof>PLoS genetics, 2018-06, Vol.14 (6), p.e1007476-e1007476</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Ramos-Alonso et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Ramos-Alonso et al 2018 Ramos-Alonso et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</citedby><cites>FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</cites><orcidid>0000-0002-4128-958X ; 0000-0002-1856-490X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023232/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6023232/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29912874$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gerber, André Paul</contributor><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Romero, Antonia María</creatorcontrib><creatorcontrib>Soler, Maria Àngel</creatorcontrib><creatorcontrib>Perea-García, Ana</creatorcontrib><creatorcontrib>Alepuz, Paula</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><title>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.</description><subject>Adaptation, Biological - genetics</subject><subject>AU Rich Elements</subject><subject>Biodegradation</subject><subject>Biology and life sciences</subject><subject>Dehydrogenases</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Funding</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Fungal</subject><subject>Genetic aspects</subject><subject>Investigations</subject><subject>Iron</subject><subject>Iron - deficiency</subject><subject>Iron - metabolism</subject><subject>Iron deficiency diseases</subject><subject>Kinases</subject><subject>Medicine and Health Sciences</subject><subject>Messenger RNA</subject><subject>Metabolism</subject><subject>Metabolites</subject><subject>mRNA turnover</subject><subject>Nutrient deficiency</subject><subject>Physiological aspects</subject><subject>Proteins</subject><subject>Regulatory Sequences, Ribonucleic Acid</subject><subject>Research and analysis methods</subject><subject>Respiration</subject><subject>Ribonucleotide reductase</subject><subject>RNA Stability - genetics</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Structure-function relationships</subject><subject>Succinate dehydrogenase</subject><subject>Transcription Factors - genetics</subject><subject>Translation</subject><subject>Translation (Genetics)</subject><subject>Tristetraprolin - genetics</subject><subject>Tristetraprolin - metabolism</subject><subject>Yeast</subject><subject>Zinc finger proteins</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk1-L1DAUxYso7jr6DUQLgujDjEnaJs2LMAyrDiy7MP4Bn0Ka3nSydJJu0or77U13Zpep7IOSh5b0d85N7ulNkpcYLXDG8IcrN3gr20XXgF1ghFjO6KPkFBdFNmc5yh8fvZ8kz0K4QigrSs6eJieEc0xKlp8m6ifI0KerfkvSzrsejE09dB5CgJD2W0h7L21oZW-cTZ1Ol5uzuXK2l8Ya26S7zcUypLei0DkbIu9S4yNbgzbKgFU3z5MnWrYBXhyes-T7p7Nvqy_z88vP69XyfK4Yof08y7DKMRBFkGJ1XkJBeElwxWtaVxViJdVcE4kRlxXFNS10WQPUtSa0qqgqslnyeu_btS6IQ3-CIIihkhJERmK9J2onr0TnzU76G-GkEbcbzjdC-t6oFkTBCM90WUFGeI5RWRKpMooJr2iuNa2j18dDtaHaQa3Axk61E9PpF2u2onG_BEUkG9cseXcw8O56gNCLnQkK2lZacMN47oJhXOacR_TNX-jDtztQjYwXMFa7WFeNpmJZ5NEHczaWXTxAxVXDzsRkY2xxfyJ4PxGM6cPvvpFDCGL9dfMf7MW_s5c_puzbI3YLsu23wbXD-FeGKZjvQeVdCB70fSAYiXFu7jonxrkRh7mJslfHYd6L7gYl-wMxfxGA</recordid><startdate>20180618</startdate><enddate>20180618</enddate><creator>Ramos-Alonso, Lucía</creator><creator>Romero, Antonia María</creator><creator>Soler, Maria Àngel</creator><creator>Perea-García, Ana</creator><creator>Alepuz, Paula</creator><creator>Puig, Sergi</creator><creator>Martínez-Pastor, María Teresa</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid></search><sort><creationdate>20180618</creationdate><title>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</title><author>Ramos-Alonso, Lucía ; Romero, Antonia María ; Soler, Maria Àngel ; Perea-García, Ana ; Alepuz, Paula ; Puig, Sergi ; Martínez-Pastor, María Teresa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-331c41e2c20c7d48e529821b9d6dbb0786f9f2a109ab61d65f8deeddf26bb6c53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adaptation, Biological - genetics</topic><topic>AU Rich Elements</topic><topic>Biodegradation</topic><topic>Biology and life sciences</topic><topic>Dehydrogenases</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Funding</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Fungal</topic><topic>Genetic aspects</topic><topic>Investigations</topic><topic>Iron</topic><topic>Iron - deficiency</topic><topic>Iron - metabolism</topic><topic>Iron deficiency diseases</topic><topic>Kinases</topic><topic>Medicine and Health Sciences</topic><topic>Messenger RNA</topic><topic>Metabolism</topic><topic>Metabolites</topic><topic>mRNA turnover</topic><topic>Nutrient deficiency</topic><topic>Physiological aspects</topic><topic>Proteins</topic><topic>Regulatory Sequences, Ribonucleic Acid</topic><topic>Research and analysis methods</topic><topic>Respiration</topic><topic>Ribonucleotide reductase</topic><topic>RNA Stability - genetics</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Structure-function relationships</topic><topic>Succinate dehydrogenase</topic><topic>Transcription Factors - genetics</topic><topic>Translation</topic><topic>Translation (Genetics)</topic><topic>Tristetraprolin - genetics</topic><topic>Tristetraprolin - metabolism</topic><topic>Yeast</topic><topic>Zinc finger proteins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ramos-Alonso, Lucía</creatorcontrib><creatorcontrib>Romero, Antonia María</creatorcontrib><creatorcontrib>Soler, Maria Àngel</creatorcontrib><creatorcontrib>Perea-García, Ana</creatorcontrib><creatorcontrib>Alepuz, Paula</creatorcontrib><creatorcontrib>Puig, Sergi</creatorcontrib><creatorcontrib>Martínez-Pastor, María Teresa</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ramos-Alonso, Lucía</au><au>Romero, Antonia María</au><au>Soler, Maria Àngel</au><au>Perea-García, Ana</au><au>Alepuz, Paula</au><au>Puig, Sergi</au><au>Martínez-Pastor, María Teresa</au><au>Gerber, André Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-06-18</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>e1007476</spage><epage>e1007476</epage><pages>e1007476-e1007476</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In response to iron deficiency, the budding yeast Saccharomyces cerevisiae undergoes a metabolic remodeling in order to optimize iron utilization. The tandem zinc finger (TZF)-containing protein Cth2 plays a critical role in this adaptation by binding and promoting the degradation of multiple mRNAs that contain AU-rich elements (AREs). Here, we demonstrate that Cth2 also functions as a translational repressor of its target mRNAs. By complementary approaches, we demonstrate that Cth2 protein inhibits the translation of SDH4, which encodes a subunit of succinate dehydrogenase, and CTH2 mRNAs in response to iron depletion. Both the AREs within SDH4 and CTH2 transcripts, and the Cth2 TZF are essential for translational repression. We show that the role played by Cth2 as a negative translational regulator extends to other mRNA targets such as WTM1, CCP1 and HEM15. A structure-function analysis of Cth2 protein suggests that the Cth2 amino-terminal domain (NTD) is important for both mRNA turnover and translation inhibition, while its carboxy-terminal domain (CTD) only participates in the regulation of translation, but is dispensable for mRNA degradation. Finally, we demonstrate that the Cth2 CTD is physiologically relevant for adaptation to iron deficiency.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29912874</pmid><doi>10.1371/journal.pgen.1007476</doi><orcidid>https://orcid.org/0000-0002-4128-958X</orcidid><orcidid>https://orcid.org/0000-0002-1856-490X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2018-06, Vol.14 (6), p.e1007476-e1007476 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2070862025 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adaptation, Biological - genetics AU Rich Elements Biodegradation Biology and life sciences Dehydrogenases DNA-Binding Proteins - genetics Funding Gene expression Gene Expression Regulation, Fungal Genetic aspects Investigations Iron Iron - deficiency Iron - metabolism Iron deficiency diseases Kinases Medicine and Health Sciences Messenger RNA Metabolism Metabolites mRNA turnover Nutrient deficiency Physiological aspects Proteins Regulatory Sequences, Ribonucleic Acid Research and analysis methods Respiration Ribonucleotide reductase RNA Stability - genetics RNA, Messenger - genetics RNA, Messenger - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae Proteins - genetics Saccharomyces cerevisiae Proteins - metabolism Structure-function relationships Succinate dehydrogenase Transcription Factors - genetics Translation Translation (Genetics) Tristetraprolin - genetics Tristetraprolin - metabolism Yeast Zinc finger proteins |
title | Yeast Cth2 protein represses the translation of ARE-containing mRNAs in response to iron deficiency |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-28T06%3A10%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Yeast%20Cth2%20protein%20represses%20the%20translation%20of%20ARE-containing%20mRNAs%20in%20response%20to%20iron%20deficiency&rft.jtitle=PLoS%20genetics&rft.au=Ramos-Alonso,%20Luc%C3%ADa&rft.date=2018-06-18&rft.volume=14&rft.issue=6&rft.spage=e1007476&rft.epage=e1007476&rft.pages=e1007476-e1007476&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007476&rft_dat=%3Cgale_plos_%3EA544991972%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070862025&rft_id=info:pmid/29912874&rft_galeid=A544991972&rft_doaj_id=oai_doaj_org_article_57293f8be329410882ac36129b64ff6d&rfr_iscdi=true |