Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice
Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but t...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2018-06, Vol.14 (6), p.e1007092-e1007092 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007092 |
---|---|
container_issue | 6 |
container_start_page | e1007092 |
container_title | PLoS pathogens |
container_volume | 14 |
creator | Tran, Tuan T Pérez-Quintero, Alvaro L Wonni, Issa Carpenter, Sara C D Yu, Yanhua Wang, Li Leach, Jan E Verdier, Valérie Cunnac, Sébastien Bogdanove, Adam J Koebnik, Ralf Hutin, Mathilde Szurek, Boris |
description | Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene. |
doi_str_mv | 10.1371/journal.ppat.1007092 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2070854785</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A544991858</galeid><doaj_id>oai_doaj_org_article_df7349048e7a4e2da90872149805b706</doaj_id><sourcerecordid>A544991858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-2beb361a34764e8e42506f981732a1df5d210e10cf205fac50d2ef94c39f72c73</originalsourceid><addsrcrecordid>eNqVk91u0zAUxyMEYmPwBggsccMuWvwZJzdI1cTYpAokGBJ3luMct57SuNhOobwAr41Du2mddoMiOdbx7_zPh32K4iXBU8IkeXfth9Drbrpe6zQlGEtc00fFMRGCTSST_PGd_VHxLMZrjDlhpHxaHNG6KjkpyXHx53zoTXI-KyGdl210EXmLZjY4o3v0Xfdp6Vf5PJvD9rcGtN5Mb7ZXs7lfQUQBNqC7iDTq4SeKQzSwTq5xnUtbtIAekOtRo02C4HKgDrRFTecWyzTGypHgefHEZgV4sf-fFN_OP1ydXUzmnz9ens3mE1PWIk1oAw0riWZclhwq4FTg0tYVkYxq0lrRUoKBYGMpFlYbgVsKtuaG1VZSI9lJ8Xqnu-58VPseRkVz-yrBZSUycbkjWq-v1Tq4lQ5b5bVT_ww-LJQOyZkOVGsl4zXmFUjNgba6xpWkhNcVFo3EZdZ6v482NCtoDfQp6O5A9PCkd0u18BtVYiZZNaZ7uhNY3nO7mM3VaMOspCVhdEMy-3YfLPgfA8SkVi5fRNfpHvww1ihwzjY_noy-uYc-3Ik9tdC5WNdbn3M0o6iaCc7rmlSiytT0ASp_Layc8T1Yl-0HDqcHDplJ8Cst9BCjuvz65T_YT4cs37Em-BgD2NuGEazGkbkpUo0jo_Yjk91e3b2jW6ebGWF_AavaEVM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2070854785</pqid></control><display><type>article</type><title>Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>PubMed Central Open Access</source><creator>Tran, Tuan T ; Pérez-Quintero, Alvaro L ; Wonni, Issa ; Carpenter, Sara C D ; Yu, Yanhua ; Wang, Li ; Leach, Jan E ; Verdier, Valérie ; Cunnac, Sébastien ; Bogdanove, Adam J ; Koebnik, Ralf ; Hutin, Mathilde ; Szurek, Boris</creator><creatorcontrib>Tran, Tuan T ; Pérez-Quintero, Alvaro L ; Wonni, Issa ; Carpenter, Sara C D ; Yu, Yanhua ; Wang, Li ; Leach, Jan E ; Verdier, Valérie ; Cunnac, Sébastien ; Bogdanove, Adam J ; Koebnik, Ralf ; Hutin, Mathilde ; Szurek, Boris</creatorcontrib><description>Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1007092</identifier><identifier>PMID: 29864161</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Bacteria ; Bacterial Proteins - genetics ; Bacteriology ; Biodiversity ; Bioinformatics ; Biology ; Biology and Life Sciences ; Blight ; Comparative analysis ; Deoxyribonucleic acid ; Disease Resistance - genetics ; Disease Susceptibility ; DNA ; Effectors ; Functional analysis ; Gene Expression Regulation, Plant ; Gene sequencing ; Genes ; Genetic aspects ; Genome, Bacterial ; Genomes ; Genomics ; Host-bacteria relationships ; Host-Pathogen Interactions ; Inoculation ; Leaf blight ; Leaf streak ; Leaves ; Life Sciences ; Medicine and Health Sciences ; Microbiology and Parasitology ; Oryza - genetics ; Oryza - growth & development ; Oryza - microbiology ; Phylogeny ; Phytopathology and phytopharmacy ; Plant cells ; Plant Diseases - genetics ; Plant Diseases - microbiology ; Plant pathology ; Plant Proteins - genetics ; Plant sciences ; Promoters (Genetics) ; Proteobacteria ; Recombination ; Research and Analysis Methods ; Ribonucleic acid ; Rice ; RNA ; S gene ; Strains (organisms) ; Subgroups ; Systematics, Phylogenetics and taxonomy ; Target recognition ; Transcription factors ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Vegetal Biology ; Virulence ; Virulence (Microbiology) ; Xanthomonas - genetics ; Xanthomonas oryzae</subject><ispartof>PLoS pathogens, 2018-06, Vol.14 (6), p.e1007092-e1007092</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Tran et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Attribution</rights><rights>2018 Tran et al 2018 Tran et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-2beb361a34764e8e42506f981732a1df5d210e10cf205fac50d2ef94c39f72c73</citedby><cites>FETCH-LOGICAL-c695t-2beb361a34764e8e42506f981732a1df5d210e10cf205fac50d2ef94c39f72c73</cites><orcidid>0000-0003-1683-4117 ; 0000-0002-1808-7082 ; 0000-0002-4419-0542 ; 0000-0002-3695-491X ; 0000-0002-8483-391X ; 0000-0001-5425-9454 ; 0000-0001-7252-4397 ; 0000-0003-2957-0376</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037387/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6037387/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29864161$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-03626132$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Tran, Tuan T</creatorcontrib><creatorcontrib>Pérez-Quintero, Alvaro L</creatorcontrib><creatorcontrib>Wonni, Issa</creatorcontrib><creatorcontrib>Carpenter, Sara C D</creatorcontrib><creatorcontrib>Yu, Yanhua</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Leach, Jan E</creatorcontrib><creatorcontrib>Verdier, Valérie</creatorcontrib><creatorcontrib>Cunnac, Sébastien</creatorcontrib><creatorcontrib>Bogdanove, Adam J</creatorcontrib><creatorcontrib>Koebnik, Ralf</creatorcontrib><creatorcontrib>Hutin, Mathilde</creatorcontrib><creatorcontrib>Szurek, Boris</creatorcontrib><title>Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene.</description><subject>Analysis</subject><subject>Bacteria</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacteriology</subject><subject>Biodiversity</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Blight</subject><subject>Comparative analysis</subject><subject>Deoxyribonucleic acid</subject><subject>Disease Resistance - genetics</subject><subject>Disease Susceptibility</subject><subject>DNA</subject><subject>Effectors</subject><subject>Functional analysis</subject><subject>Gene Expression Regulation, Plant</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genome, Bacterial</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Host-bacteria relationships</subject><subject>Host-Pathogen Interactions</subject><subject>Inoculation</subject><subject>Leaf blight</subject><subject>Leaf streak</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Medicine and Health Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Oryza - genetics</subject><subject>Oryza - growth & development</subject><subject>Oryza - microbiology</subject><subject>Phylogeny</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant cells</subject><subject>Plant Diseases - genetics</subject><subject>Plant Diseases - microbiology</subject><subject>Plant pathology</subject><subject>Plant Proteins - genetics</subject><subject>Plant sciences</subject><subject>Promoters (Genetics)</subject><subject>Proteobacteria</subject><subject>Recombination</subject><subject>Research and Analysis Methods</subject><subject>Ribonucleic acid</subject><subject>Rice</subject><subject>RNA</subject><subject>S gene</subject><subject>Strains (organisms)</subject><subject>Subgroups</subject><subject>Systematics, Phylogenetics and taxonomy</subject><subject>Target recognition</subject><subject>Transcription factors</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Vegetal Biology</subject><subject>Virulence</subject><subject>Virulence (Microbiology)</subject><subject>Xanthomonas - genetics</subject><subject>Xanthomonas oryzae</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk91u0zAUxyMEYmPwBggsccMuWvwZJzdI1cTYpAokGBJ3luMct57SuNhOobwAr41Du2mddoMiOdbx7_zPh32K4iXBU8IkeXfth9Drbrpe6zQlGEtc00fFMRGCTSST_PGd_VHxLMZrjDlhpHxaHNG6KjkpyXHx53zoTXI-KyGdl210EXmLZjY4o3v0Xfdp6Vf5PJvD9rcGtN5Mb7ZXs7lfQUQBNqC7iDTq4SeKQzSwTq5xnUtbtIAekOtRo02C4HKgDrRFTecWyzTGypHgefHEZgV4sf-fFN_OP1ydXUzmnz9ens3mE1PWIk1oAw0riWZclhwq4FTg0tYVkYxq0lrRUoKBYGMpFlYbgVsKtuaG1VZSI9lJ8Xqnu-58VPseRkVz-yrBZSUycbkjWq-v1Tq4lQ5b5bVT_ww-LJQOyZkOVGsl4zXmFUjNgba6xpWkhNcVFo3EZdZ6v482NCtoDfQp6O5A9PCkd0u18BtVYiZZNaZ7uhNY3nO7mM3VaMOspCVhdEMy-3YfLPgfA8SkVi5fRNfpHvww1ihwzjY_noy-uYc-3Ik9tdC5WNdbn3M0o6iaCc7rmlSiytT0ASp_Layc8T1Yl-0HDqcHDplJ8Cst9BCjuvz65T_YT4cs37Em-BgD2NuGEazGkbkpUo0jo_Yjk91e3b2jW6ebGWF_AavaEVM</recordid><startdate>20180601</startdate><enddate>20180601</enddate><creator>Tran, Tuan T</creator><creator>Pérez-Quintero, Alvaro L</creator><creator>Wonni, Issa</creator><creator>Carpenter, Sara C D</creator><creator>Yu, Yanhua</creator><creator>Wang, Li</creator><creator>Leach, Jan E</creator><creator>Verdier, Valérie</creator><creator>Cunnac, Sébastien</creator><creator>Bogdanove, Adam J</creator><creator>Koebnik, Ralf</creator><creator>Hutin, Mathilde</creator><creator>Szurek, Boris</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1683-4117</orcidid><orcidid>https://orcid.org/0000-0002-1808-7082</orcidid><orcidid>https://orcid.org/0000-0002-4419-0542</orcidid><orcidid>https://orcid.org/0000-0002-3695-491X</orcidid><orcidid>https://orcid.org/0000-0002-8483-391X</orcidid><orcidid>https://orcid.org/0000-0001-5425-9454</orcidid><orcidid>https://orcid.org/0000-0001-7252-4397</orcidid><orcidid>https://orcid.org/0000-0003-2957-0376</orcidid></search><sort><creationdate>20180601</creationdate><title>Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice</title><author>Tran, Tuan T ; Pérez-Quintero, Alvaro L ; Wonni, Issa ; Carpenter, Sara C D ; Yu, Yanhua ; Wang, Li ; Leach, Jan E ; Verdier, Valérie ; Cunnac, Sébastien ; Bogdanove, Adam J ; Koebnik, Ralf ; Hutin, Mathilde ; Szurek, Boris</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-2beb361a34764e8e42506f981732a1df5d210e10cf205fac50d2ef94c39f72c73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Bacteria</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacteriology</topic><topic>Biodiversity</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Blight</topic><topic>Comparative analysis</topic><topic>Deoxyribonucleic acid</topic><topic>Disease Resistance - genetics</topic><topic>Disease Susceptibility</topic><topic>DNA</topic><topic>Effectors</topic><topic>Functional analysis</topic><topic>Gene Expression Regulation, Plant</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genome, Bacterial</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Host-bacteria relationships</topic><topic>Host-Pathogen Interactions</topic><topic>Inoculation</topic><topic>Leaf blight</topic><topic>Leaf streak</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Medicine and Health Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Oryza - genetics</topic><topic>Oryza - growth & development</topic><topic>Oryza - microbiology</topic><topic>Phylogeny</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant cells</topic><topic>Plant Diseases - genetics</topic><topic>Plant Diseases - microbiology</topic><topic>Plant pathology</topic><topic>Plant Proteins - genetics</topic><topic>Plant sciences</topic><topic>Promoters (Genetics)</topic><topic>Proteobacteria</topic><topic>Recombination</topic><topic>Research and Analysis Methods</topic><topic>Ribonucleic acid</topic><topic>Rice</topic><topic>RNA</topic><topic>S gene</topic><topic>Strains (organisms)</topic><topic>Subgroups</topic><topic>Systematics, Phylogenetics and taxonomy</topic><topic>Target recognition</topic><topic>Transcription factors</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Vegetal Biology</topic><topic>Virulence</topic><topic>Virulence (Microbiology)</topic><topic>Xanthomonas - genetics</topic><topic>Xanthomonas oryzae</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tran, Tuan T</creatorcontrib><creatorcontrib>Pérez-Quintero, Alvaro L</creatorcontrib><creatorcontrib>Wonni, Issa</creatorcontrib><creatorcontrib>Carpenter, Sara C D</creatorcontrib><creatorcontrib>Yu, Yanhua</creatorcontrib><creatorcontrib>Wang, Li</creatorcontrib><creatorcontrib>Leach, Jan E</creatorcontrib><creatorcontrib>Verdier, Valérie</creatorcontrib><creatorcontrib>Cunnac, Sébastien</creatorcontrib><creatorcontrib>Bogdanove, Adam J</creatorcontrib><creatorcontrib>Koebnik, Ralf</creatorcontrib><creatorcontrib>Hutin, Mathilde</creatorcontrib><creatorcontrib>Szurek, Boris</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tran, Tuan T</au><au>Pérez-Quintero, Alvaro L</au><au>Wonni, Issa</au><au>Carpenter, Sara C D</au><au>Yu, Yanhua</au><au>Wang, Li</au><au>Leach, Jan E</au><au>Verdier, Valérie</au><au>Cunnac, Sébastien</au><au>Bogdanove, Adam J</au><au>Koebnik, Ralf</au><au>Hutin, Mathilde</au><au>Szurek, Boris</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2018-06-01</date><risdate>2018</risdate><volume>14</volume><issue>6</issue><spage>e1007092</spage><epage>e1007092</epage><pages>e1007092-e1007092</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>Most Xanthomonas species translocate Transcription Activator-Like (TAL) effectors into plant cells where they function like plant transcription factors via a programmable DNA-binding domain. Characterized strains of rice pathogenic X. oryzae pv. oryzae harbor 9-16 different tal effector genes, but the function of only a few of them has been decoded. Using sequencing of entire genomes, we first performed comparative analyses of the complete repertoires of TAL effectors, herein referred to as TALomes, in three Xoo strains forming an African genetic lineage different from Asian Xoo. A phylogenetic analysis of the three TALomes combined with in silico predictions of TAL effector targets showed that African Xoo TALomes are highly conserved, genetically distant from Asian ones, and closely related to TAL effectors from the bacterial leaf streak pathogen Xanthomonas oryzae pv. oryzicola (Xoc). Nine clusters of TAL effectors could be identified among the three TALomes, including three showing higher levels of variation in their repeat variable diresidues (RVDs). Detailed analyses of these groups revealed recombination events as a possible source of variation among TAL effector genes. Next, to address contribution to virulence, nine TAL effector genes from the Malian Xoo strain MAI1 and four allelic variants from the Burkinabe Xoo strain BAI3, thus representing most of the TAL effector diversity in African Xoo strains, were expressed in the TAL effector-deficient X. oryzae strain X11-5A for gain-of-function assays. Inoculation of the susceptible rice variety Azucena lead to the discovery of three TAL effectors promoting virulence, including two TAL effectors previously reported to target the susceptibility (S) gene OsSWEET14 and a novel major virulence contributor, TalB. RNA profiling experiments in rice and in silico prediction of EBEs were carried out to identify candidate targets of TalB, revealing OsTFX1, a bZIP transcription factor previously identified as a bacterial blight S gene, and OsERF#123, which encodes a subgroup IXc AP2/ERF transcription factor. Use of designer TAL effectors demonstrated that induction of either gene resulted in greater susceptibility to strain X11-5A. The induction of OsERF#123 by BAI3Δ1, a talB knockout derivative of BAI3, carrying these designer TAL effectors increased virulence of BAI3Δ1, validating OsERF#123 as a new, bacterial blight S gene.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29864161</pmid><doi>10.1371/journal.ppat.1007092</doi><orcidid>https://orcid.org/0000-0003-1683-4117</orcidid><orcidid>https://orcid.org/0000-0002-1808-7082</orcidid><orcidid>https://orcid.org/0000-0002-4419-0542</orcidid><orcidid>https://orcid.org/0000-0002-3695-491X</orcidid><orcidid>https://orcid.org/0000-0002-8483-391X</orcidid><orcidid>https://orcid.org/0000-0001-5425-9454</orcidid><orcidid>https://orcid.org/0000-0001-7252-4397</orcidid><orcidid>https://orcid.org/0000-0003-2957-0376</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2018-06, Vol.14 (6), p.e1007092-e1007092 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2070854785 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; PubMed Central Open Access |
subjects | Analysis Bacteria Bacterial Proteins - genetics Bacteriology Biodiversity Bioinformatics Biology Biology and Life Sciences Blight Comparative analysis Deoxyribonucleic acid Disease Resistance - genetics Disease Susceptibility DNA Effectors Functional analysis Gene Expression Regulation, Plant Gene sequencing Genes Genetic aspects Genome, Bacterial Genomes Genomics Host-bacteria relationships Host-Pathogen Interactions Inoculation Leaf blight Leaf streak Leaves Life Sciences Medicine and Health Sciences Microbiology and Parasitology Oryza - genetics Oryza - growth & development Oryza - microbiology Phylogeny Phytopathology and phytopharmacy Plant cells Plant Diseases - genetics Plant Diseases - microbiology Plant pathology Plant Proteins - genetics Plant sciences Promoters (Genetics) Proteobacteria Recombination Research and Analysis Methods Ribonucleic acid Rice RNA S gene Strains (organisms) Subgroups Systematics, Phylogenetics and taxonomy Target recognition Transcription factors Transcription Factors - genetics Transcription Factors - metabolism Vegetal Biology Virulence Virulence (Microbiology) Xanthomonas - genetics Xanthomonas oryzae |
title | Functional analysis of African Xanthomonas oryzae pv. oryzae TALomes reveals a new susceptibility gene in bacterial leaf blight of rice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T07%3A15%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20analysis%20of%20African%20Xanthomonas%20oryzae%20pv.%20oryzae%20TALomes%20reveals%20a%20new%20susceptibility%20gene%20in%20bacterial%20leaf%20blight%20of%20rice&rft.jtitle=PLoS%20pathogens&rft.au=Tran,%20Tuan%20T&rft.date=2018-06-01&rft.volume=14&rft.issue=6&rft.spage=e1007092&rft.epage=e1007092&rft.pages=e1007092-e1007092&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1007092&rft_dat=%3Cgale_plos_%3EA544991858%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2070854785&rft_id=info:pmid/29864161&rft_galeid=A544991858&rft_doaj_id=oai_doaj_org_article_df7349048e7a4e2da90872149805b706&rfr_iscdi=true |