Genome-wide identification and characterization of the CKII gene family in the cultivated banana cultivar (Musa spp. cv Tianbaojiao) and the wild banana (Musa itinerans)
Plant casein kinase II (CKII) plays an essential role in regulating plant growth and development, and responses to biotic and abiotic stresses. Here, we report the identification and characterization of the CKII family genes in Musa spp. cv. 'Tianbaojiao' (AAA group) and the wild banana (M...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-07, Vol.13 (7), p.e0200149-e0200149 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Zusammenfassung: | Plant casein kinase II (CKII) plays an essential role in regulating plant growth and development, and responses to biotic and abiotic stresses. Here, we report the identification and characterization of the CKII family genes in Musa spp. cv. 'Tianbaojiao' (AAA group) and the wild banana (Musa itinerans). The 13 cDNA sequences of the CKII family members were identified both in 'Tianbaojiao' and wild banana, respectively. The differences between CKII α and CKII β members are corroborated through the subcellular localizations, phosphorylation sites and gene structures. The cloning of CKII β-like-2 gDNA sequences in wild banana and 'Tianbaojiao' and the analysis of gene structures showed MiCKIIβ-like-2b and MaCKIIβ-like-2 are likely alternatively spliced transcripts, which were derived from the alternative splicing events that involved exon deletion. The qPCR validation showed differential expression CKII family members in response to cold stress and also in all tested tissues (leaf, pseudostem and root) of wild banana. In particular, the normal transcript MiCKIIβ-like-2a was highly expressed in response to cold stress in wild banana; oppositely, the alternatively spliced transcript MiCKIIβ-like-2b was quite lowly expressed. The complex origin and long-term evolution of Musa lineage might explain the alternative splicing events of CKII β-like-2. |
---|---|
ISSN: | 1932-6203 1932-6203 |
DOI: | 10.1371/journal.pone.0200149 |