Reducing age bias in decision analyses of anticoagulation for patients with nonvalvular atrial fibrillation - A microsimulation study

Anticoagulation decreases a patient's risk of ischemic stroke and increases the risk of hemorrhage. Decision analyses regarding anticoagulation therefore require that different outcomes be weighted in comparison to one another. Most decision analyses to date have weighted intracranial hemorrhag...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-07, Vol.13 (7), p.e0199593
Hauptverfasser: Pappas, Matthew A, Vijan, Sandeep, Rothberg, Michael B, Singer, Daniel E
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 7
container_start_page e0199593
container_title PloS one
container_volume 13
creator Pappas, Matthew A
Vijan, Sandeep
Rothberg, Michael B
Singer, Daniel E
description Anticoagulation decreases a patient's risk of ischemic stroke and increases the risk of hemorrhage. Decision analyses regarding anticoagulation therefore require that different outcomes be weighted in comparison to one another. Most decision analyses to date have weighted intracranial hemorrhage (ICH) as 1.5 times worse than ischemic stroke, but because death and disability have lifelong impact, the expected impact should vary by life expectancy. Therefore, a fixed weighting ratio leads to age-related bias decision analyses of anticoagulation. We aimed to quantify the relative impact of ICH and ischemic stroke and derive a ratio that allows decision analysis without microsimulation. We created a microsimulation model to predict QALYs lost due to ICH and ischemic stroke. We then applied a meta-model to predict the ratio of QALYs lost from ICH relative to ischemic stroke. Previously-used weighting ratios (1.5) are close to our derived mean weighting ratio (1.60). However, the weighting ratio of QALYs lost from ICH relative to ischemic stroke is sensitive to age and discount rate. Patients at younger ages have higher mean weighting ratios, as do patients with higher discount rates. The ratio of QALYs lost to ICH relative to ischemic stroke varies with age and discount rate. We present a set of such ratios here for use in decision analyses that do not incorporate full microsimulation models. Use of weighting ratios that vary with age, rather than the current fixed ratios, has the potential to reduce age-based bias in decision-making regarding events with lifelong implications. In this case, use of dynamic ratios may change anticoagulation recommendations for patients with nonvalvular atrial fibrillation at relatively low stroke risk.
doi_str_mv 10.1371/journal.pone.0199593
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2068340247</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A546243534</galeid><doaj_id>oai_doaj_org_article_7c816b84db4b45b2a2d7ad977ca5e7e1</doaj_id><sourcerecordid>A546243534</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-c609edf3c13361052e92d9118080049fe1e35e155dfa46c0b6774ce36ffdaac23</originalsourceid><addsrcrecordid>eNqNk2uL1DAUhoso7rr6D0QDguCHGXNrOv0iDIuXgYWF9fI1nObSydBpxqQdnR_g_zZ1OssUFKTQHpLnfRPenpNlzwmeE1aQtxvfhxaa-c63Zo5JWeYle5BdkpLRmaCYPTyrL7InMW4wztlCiMfZBS0HHOPL7Ned0b1ybY2gNqhyEJFrkTbKRedbBOmEQzQReZvqzikPdd9AN-xZH9AulabtIvrhujVqfbuHZp-AgKALDhpkXRVcMypmaIm2TgUf3fbkErteH55mjyw00Twbv1fZ1w_vv1x_mt3cflxdL29mSpS0S29cGm2ZIowJgnNqSqpLQhZ4gTEvrSGG5YbkubbAhcKVKAquDBPWagBF2VX28ui7a3yUY4JRUiwWjGPKi0SsjoT2sJG74LYQDtKDk38WfKglhJRDY2ShFkRUC64rXvG8okB1AbosCgW5KQxJXu_G0_pqa7RKQQVoJqbTndatZe33UmCOC54ng1ejQfDfexO7f1x5pGpIt3Kt9clMbV1UcplzQTnLGU_U_C9UerRJvyT1kHVpfSJ4MxEkpjM_uxr6GOXq893_s7ffpuzrM3ZtoOnW0Tf90A1xCvIjODRMDMbeJ0ewHEbglIYcRkCOI5BkL85Tvxedep79Bv8rBDg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2068340247</pqid></control><display><type>article</type><title>Reducing age bias in decision analyses of anticoagulation for patients with nonvalvular atrial fibrillation - A microsimulation study</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Pappas, Matthew A ; Vijan, Sandeep ; Rothberg, Michael B ; Singer, Daniel E</creator><contributor>Salinas, Pablo</contributor><creatorcontrib>Pappas, Matthew A ; Vijan, Sandeep ; Rothberg, Michael B ; Singer, Daniel E ; Salinas, Pablo</creatorcontrib><description>Anticoagulation decreases a patient's risk of ischemic stroke and increases the risk of hemorrhage. Decision analyses regarding anticoagulation therefore require that different outcomes be weighted in comparison to one another. Most decision analyses to date have weighted intracranial hemorrhage (ICH) as 1.5 times worse than ischemic stroke, but because death and disability have lifelong impact, the expected impact should vary by life expectancy. Therefore, a fixed weighting ratio leads to age-related bias decision analyses of anticoagulation. We aimed to quantify the relative impact of ICH and ischemic stroke and derive a ratio that allows decision analysis without microsimulation. We created a microsimulation model to predict QALYs lost due to ICH and ischemic stroke. We then applied a meta-model to predict the ratio of QALYs lost from ICH relative to ischemic stroke. Previously-used weighting ratios (1.5) are close to our derived mean weighting ratio (1.60). However, the weighting ratio of QALYs lost from ICH relative to ischemic stroke is sensitive to age and discount rate. Patients at younger ages have higher mean weighting ratios, as do patients with higher discount rates. The ratio of QALYs lost to ICH relative to ischemic stroke varies with age and discount rate. We present a set of such ratios here for use in decision analyses that do not incorporate full microsimulation models. Use of weighting ratios that vary with age, rather than the current fixed ratios, has the potential to reduce age-based bias in decision-making regarding events with lifelong implications. In this case, use of dynamic ratios may change anticoagulation recommendations for patients with nonvalvular atrial fibrillation at relatively low stroke risk.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0199593</identifier><identifier>PMID: 29995900</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Age ; Age Factors ; Aged ; Aged, 80 and over ; Anticoagulants ; Anticoagulants - pharmacology ; Anticoagulants - therapeutic use ; Atrial Fibrillation - blood ; Atrial Fibrillation - complications ; Atrial Fibrillation - epidemiology ; Bias ; Biology and Life Sciences ; Blood Coagulation - drug effects ; Cardiac arrhythmia ; Census of Population ; Complications and side effects ; Cost analysis ; Decision analysis ; Decision making ; Decision Support Techniques ; Disease control ; Dosage and administration ; Drug dosages ; Engineering and Technology ; Estimates ; Female ; Fibrillation ; Health risks ; Hemorrhage ; Hospital Mortality ; Hospitals ; Humans ; Internal medicine ; Intracranial Hemorrhages - etiology ; Ischemia ; Life expectancy ; Life span ; Male ; Mathematical models ; Medicine ; Medicine and Health Sciences ; Middle Aged ; Models, Cardiovascular ; Monte Carlo Method ; Monte Carlo simulation ; Mortality ; Nutrition ; Patients ; Prevention ; Quality-Adjusted Life Years ; Research and Analysis Methods ; Risk factors ; Severity of Illness Index ; Stroke ; Stroke - diagnosis ; Stroke - epidemiology ; Stroke - etiology ; Stroke - prevention &amp; control ; Thrombolytic Therapy ; Weighting</subject><ispartof>PloS one, 2018-07, Vol.13 (7), p.e0199593</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-c609edf3c13361052e92d9118080049fe1e35e155dfa46c0b6774ce36ffdaac23</citedby><cites>FETCH-LOGICAL-c692t-c609edf3c13361052e92d9118080049fe1e35e155dfa46c0b6774ce36ffdaac23</cites><orcidid>0000-0002-0353-1785</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040745/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6040745/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29995900$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Salinas, Pablo</contributor><creatorcontrib>Pappas, Matthew A</creatorcontrib><creatorcontrib>Vijan, Sandeep</creatorcontrib><creatorcontrib>Rothberg, Michael B</creatorcontrib><creatorcontrib>Singer, Daniel E</creatorcontrib><title>Reducing age bias in decision analyses of anticoagulation for patients with nonvalvular atrial fibrillation - A microsimulation study</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Anticoagulation decreases a patient's risk of ischemic stroke and increases the risk of hemorrhage. Decision analyses regarding anticoagulation therefore require that different outcomes be weighted in comparison to one another. Most decision analyses to date have weighted intracranial hemorrhage (ICH) as 1.5 times worse than ischemic stroke, but because death and disability have lifelong impact, the expected impact should vary by life expectancy. Therefore, a fixed weighting ratio leads to age-related bias decision analyses of anticoagulation. We aimed to quantify the relative impact of ICH and ischemic stroke and derive a ratio that allows decision analysis without microsimulation. We created a microsimulation model to predict QALYs lost due to ICH and ischemic stroke. We then applied a meta-model to predict the ratio of QALYs lost from ICH relative to ischemic stroke. Previously-used weighting ratios (1.5) are close to our derived mean weighting ratio (1.60). However, the weighting ratio of QALYs lost from ICH relative to ischemic stroke is sensitive to age and discount rate. Patients at younger ages have higher mean weighting ratios, as do patients with higher discount rates. The ratio of QALYs lost to ICH relative to ischemic stroke varies with age and discount rate. We present a set of such ratios here for use in decision analyses that do not incorporate full microsimulation models. Use of weighting ratios that vary with age, rather than the current fixed ratios, has the potential to reduce age-based bias in decision-making regarding events with lifelong implications. In this case, use of dynamic ratios may change anticoagulation recommendations for patients with nonvalvular atrial fibrillation at relatively low stroke risk.</description><subject>Adult</subject><subject>Age</subject><subject>Age Factors</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Anticoagulants</subject><subject>Anticoagulants - pharmacology</subject><subject>Anticoagulants - therapeutic use</subject><subject>Atrial Fibrillation - blood</subject><subject>Atrial Fibrillation - complications</subject><subject>Atrial Fibrillation - epidemiology</subject><subject>Bias</subject><subject>Biology and Life Sciences</subject><subject>Blood Coagulation - drug effects</subject><subject>Cardiac arrhythmia</subject><subject>Census of Population</subject><subject>Complications and side effects</subject><subject>Cost analysis</subject><subject>Decision analysis</subject><subject>Decision making</subject><subject>Decision Support Techniques</subject><subject>Disease control</subject><subject>Dosage and administration</subject><subject>Drug dosages</subject><subject>Engineering and Technology</subject><subject>Estimates</subject><subject>Female</subject><subject>Fibrillation</subject><subject>Health risks</subject><subject>Hemorrhage</subject><subject>Hospital Mortality</subject><subject>Hospitals</subject><subject>Humans</subject><subject>Internal medicine</subject><subject>Intracranial Hemorrhages - etiology</subject><subject>Ischemia</subject><subject>Life expectancy</subject><subject>Life span</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Middle Aged</subject><subject>Models, Cardiovascular</subject><subject>Monte Carlo Method</subject><subject>Monte Carlo simulation</subject><subject>Mortality</subject><subject>Nutrition</subject><subject>Patients</subject><subject>Prevention</subject><subject>Quality-Adjusted Life Years</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Severity of Illness Index</subject><subject>Stroke</subject><subject>Stroke - diagnosis</subject><subject>Stroke - epidemiology</subject><subject>Stroke - etiology</subject><subject>Stroke - prevention &amp; control</subject><subject>Thrombolytic Therapy</subject><subject>Weighting</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk2uL1DAUhoso7rr6D0QDguCHGXNrOv0iDIuXgYWF9fI1nObSydBpxqQdnR_g_zZ1OssUFKTQHpLnfRPenpNlzwmeE1aQtxvfhxaa-c63Zo5JWeYle5BdkpLRmaCYPTyrL7InMW4wztlCiMfZBS0HHOPL7Ned0b1ybY2gNqhyEJFrkTbKRedbBOmEQzQReZvqzikPdd9AN-xZH9AulabtIvrhujVqfbuHZp-AgKALDhpkXRVcMypmaIm2TgUf3fbkErteH55mjyw00Twbv1fZ1w_vv1x_mt3cflxdL29mSpS0S29cGm2ZIowJgnNqSqpLQhZ4gTEvrSGG5YbkubbAhcKVKAquDBPWagBF2VX28ui7a3yUY4JRUiwWjGPKi0SsjoT2sJG74LYQDtKDk38WfKglhJRDY2ShFkRUC64rXvG8okB1AbosCgW5KQxJXu_G0_pqa7RKQQVoJqbTndatZe33UmCOC54ng1ejQfDfexO7f1x5pGpIt3Kt9clMbV1UcplzQTnLGU_U_C9UerRJvyT1kHVpfSJ4MxEkpjM_uxr6GOXq893_s7ffpuzrM3ZtoOnW0Tf90A1xCvIjODRMDMbeJ0ewHEbglIYcRkCOI5BkL85Tvxedep79Bv8rBDg</recordid><startdate>20180711</startdate><enddate>20180711</enddate><creator>Pappas, Matthew A</creator><creator>Vijan, Sandeep</creator><creator>Rothberg, Michael B</creator><creator>Singer, Daniel E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0353-1785</orcidid></search><sort><creationdate>20180711</creationdate><title>Reducing age bias in decision analyses of anticoagulation for patients with nonvalvular atrial fibrillation - A microsimulation study</title><author>Pappas, Matthew A ; Vijan, Sandeep ; Rothberg, Michael B ; Singer, Daniel E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-c609edf3c13361052e92d9118080049fe1e35e155dfa46c0b6774ce36ffdaac23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Age</topic><topic>Age Factors</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Anticoagulants</topic><topic>Anticoagulants - pharmacology</topic><topic>Anticoagulants - therapeutic use</topic><topic>Atrial Fibrillation - blood</topic><topic>Atrial Fibrillation - complications</topic><topic>Atrial Fibrillation - epidemiology</topic><topic>Bias</topic><topic>Biology and Life Sciences</topic><topic>Blood Coagulation - drug effects</topic><topic>Cardiac arrhythmia</topic><topic>Census of Population</topic><topic>Complications and side effects</topic><topic>Cost analysis</topic><topic>Decision analysis</topic><topic>Decision making</topic><topic>Decision Support Techniques</topic><topic>Disease control</topic><topic>Dosage and administration</topic><topic>Drug dosages</topic><topic>Engineering and Technology</topic><topic>Estimates</topic><topic>Female</topic><topic>Fibrillation</topic><topic>Health risks</topic><topic>Hemorrhage</topic><topic>Hospital Mortality</topic><topic>Hospitals</topic><topic>Humans</topic><topic>Internal medicine</topic><topic>Intracranial Hemorrhages - etiology</topic><topic>Ischemia</topic><topic>Life expectancy</topic><topic>Life span</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Middle Aged</topic><topic>Models, Cardiovascular</topic><topic>Monte Carlo Method</topic><topic>Monte Carlo simulation</topic><topic>Mortality</topic><topic>Nutrition</topic><topic>Patients</topic><topic>Prevention</topic><topic>Quality-Adjusted Life Years</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Severity of Illness Index</topic><topic>Stroke</topic><topic>Stroke - diagnosis</topic><topic>Stroke - epidemiology</topic><topic>Stroke - etiology</topic><topic>Stroke - prevention &amp; control</topic><topic>Thrombolytic Therapy</topic><topic>Weighting</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pappas, Matthew A</creatorcontrib><creatorcontrib>Vijan, Sandeep</creatorcontrib><creatorcontrib>Rothberg, Michael B</creatorcontrib><creatorcontrib>Singer, Daniel E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pappas, Matthew A</au><au>Vijan, Sandeep</au><au>Rothberg, Michael B</au><au>Singer, Daniel E</au><au>Salinas, Pablo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Reducing age bias in decision analyses of anticoagulation for patients with nonvalvular atrial fibrillation - A microsimulation study</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-07-11</date><risdate>2018</risdate><volume>13</volume><issue>7</issue><spage>e0199593</spage><pages>e0199593-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Anticoagulation decreases a patient's risk of ischemic stroke and increases the risk of hemorrhage. Decision analyses regarding anticoagulation therefore require that different outcomes be weighted in comparison to one another. Most decision analyses to date have weighted intracranial hemorrhage (ICH) as 1.5 times worse than ischemic stroke, but because death and disability have lifelong impact, the expected impact should vary by life expectancy. Therefore, a fixed weighting ratio leads to age-related bias decision analyses of anticoagulation. We aimed to quantify the relative impact of ICH and ischemic stroke and derive a ratio that allows decision analysis without microsimulation. We created a microsimulation model to predict QALYs lost due to ICH and ischemic stroke. We then applied a meta-model to predict the ratio of QALYs lost from ICH relative to ischemic stroke. Previously-used weighting ratios (1.5) are close to our derived mean weighting ratio (1.60). However, the weighting ratio of QALYs lost from ICH relative to ischemic stroke is sensitive to age and discount rate. Patients at younger ages have higher mean weighting ratios, as do patients with higher discount rates. The ratio of QALYs lost to ICH relative to ischemic stroke varies with age and discount rate. We present a set of such ratios here for use in decision analyses that do not incorporate full microsimulation models. Use of weighting ratios that vary with age, rather than the current fixed ratios, has the potential to reduce age-based bias in decision-making regarding events with lifelong implications. In this case, use of dynamic ratios may change anticoagulation recommendations for patients with nonvalvular atrial fibrillation at relatively low stroke risk.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29995900</pmid><doi>10.1371/journal.pone.0199593</doi><tpages>e0199593</tpages><orcidid>https://orcid.org/0000-0002-0353-1785</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-07, Vol.13 (7), p.e0199593
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2068340247
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Adult
Age
Age Factors
Aged
Aged, 80 and over
Anticoagulants
Anticoagulants - pharmacology
Anticoagulants - therapeutic use
Atrial Fibrillation - blood
Atrial Fibrillation - complications
Atrial Fibrillation - epidemiology
Bias
Biology and Life Sciences
Blood Coagulation - drug effects
Cardiac arrhythmia
Census of Population
Complications and side effects
Cost analysis
Decision analysis
Decision making
Decision Support Techniques
Disease control
Dosage and administration
Drug dosages
Engineering and Technology
Estimates
Female
Fibrillation
Health risks
Hemorrhage
Hospital Mortality
Hospitals
Humans
Internal medicine
Intracranial Hemorrhages - etiology
Ischemia
Life expectancy
Life span
Male
Mathematical models
Medicine
Medicine and Health Sciences
Middle Aged
Models, Cardiovascular
Monte Carlo Method
Monte Carlo simulation
Mortality
Nutrition
Patients
Prevention
Quality-Adjusted Life Years
Research and Analysis Methods
Risk factors
Severity of Illness Index
Stroke
Stroke - diagnosis
Stroke - epidemiology
Stroke - etiology
Stroke - prevention & control
Thrombolytic Therapy
Weighting
title Reducing age bias in decision analyses of anticoagulation for patients with nonvalvular atrial fibrillation - A microsimulation study
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T03%3A29%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Reducing%20age%20bias%20in%20decision%20analyses%20of%20anticoagulation%20for%20patients%20with%20nonvalvular%20atrial%20fibrillation%20-%20A%20microsimulation%20study&rft.jtitle=PloS%20one&rft.au=Pappas,%20Matthew%20A&rft.date=2018-07-11&rft.volume=13&rft.issue=7&rft.spage=e0199593&rft.pages=e0199593-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0199593&rft_dat=%3Cgale_plos_%3EA546243534%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2068340247&rft_id=info:pmid/29995900&rft_galeid=A546243534&rft_doaj_id=oai_doaj_org_article_7c816b84db4b45b2a2d7ad977ca5e7e1&rfr_iscdi=true