Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease
The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some eve...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-07, Vol.13 (7), p.e0200077-e0200077 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0200077 |
---|---|
container_issue | 7 |
container_start_page | e0200077 |
container_title | PloS one |
container_volume | 13 |
creator | Götz, Alexander Scharnagl, Christina |
description | The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type. |
doi_str_mv | 10.1371/journal.pone.0200077 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2063253224</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_2406f160359f4f96ba627c9b8192655d</doaj_id><sourcerecordid>2063253224</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-2a65b5c1ffa511e3fe8bfd149acbeaaa57c176708f1ef097324f2fa5290891473</originalsourceid><addsrcrecordid>eNptks9u1DAQxiMEoqXwBggicYBLFv-J7fiCtCoFKlWiBzhbjjPe9eLYi50FlffiNXimetm0ahGnsT3f_Dwz-qrqOUYLTAV-u4m7FLRfbGOABSIIISEeVMdYUtJwgujDO-ej6knOG4QY7Th_XB0RKTkv1-Pq53uXM5jJhVVtYrAxjXpysYBrs9ZhBbl2oV5eXr7O9ZR0yCOMfYlQD3HUJeVd-AZDPcX6z-8GrHXGQTBX-yqrR-ddIS39rzW4EVKBDC6DzvC0emS1z_BsjifV1w9nX04_NRefP56fLi8awwifGqI565nB1mqGMVALXW8H3EptetBaM2Gw4AJ1FoNFUlDSWlK0RKJO4lbQk-rlgbv1Mat5Z1kRxClhlJC2KM4PiiHqjdomN-p0paJ26u9DTCul0-SMB0VaxC3miDJpWyt5rzkRRvYdloQzNhTWu_m3XT_CYCCUnfl70PuZ4NZqFX8ojkiHW14Ab2ZAit93kCc1umzA-7LxuDv0LfBeXKSv_pH-f7r2oDIp5pzA3jaDkdr76KZK7X2kZh-Vshd3B7ktujEOvQYU_sf4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2063253224</pqid></control><display><type>article</type><title>Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Götz, Alexander ; Scharnagl, Christina</creator><contributor>Soares, Claudio M.</contributor><creatorcontrib>Götz, Alexander ; Scharnagl, Christina ; Soares, Claudio M.</creatorcontrib><description>The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0200077</identifier><identifier>PMID: 29966005</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Alzheimer's disease ; Amyloid precursor protein ; Biology and Life Sciences ; Cleavage ; Coupling (molecular) ; Docking ; Earth Sciences ; Efficiency ; Enzymes ; Flexibility ; Helicity ; Hydrogen ; Kinases ; Molecular chains ; Molecular structure ; Mutants ; Mutation ; Peptides ; Physical Sciences ; Physics ; Production lines ; Proteins ; Secretase ; Transmembrane domains ; Variation</subject><ispartof>PloS one, 2018-07, Vol.13 (7), p.e0200077-e0200077</ispartof><rights>2018 Götz, Scharnagl. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Götz, Scharnagl 2018 Götz, Scharnagl</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-2a65b5c1ffa511e3fe8bfd149acbeaaa57c176708f1ef097324f2fa5290891473</citedby><cites>FETCH-LOGICAL-c526t-2a65b5c1ffa511e3fe8bfd149acbeaaa57c176708f1ef097324f2fa5290891473</cites><orcidid>0000-0001-8741-1694 ; 0000-0003-1434-611X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028146/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6028146/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,728,781,785,865,886,2103,2929,23870,27928,27929,53795,53797</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29966005$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Soares, Claudio M.</contributor><creatorcontrib>Götz, Alexander</creatorcontrib><creatorcontrib>Scharnagl, Christina</creatorcontrib><title>Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.</description><subject>Alzheimer's disease</subject><subject>Amyloid precursor protein</subject><subject>Biology and Life Sciences</subject><subject>Cleavage</subject><subject>Coupling (molecular)</subject><subject>Docking</subject><subject>Earth Sciences</subject><subject>Efficiency</subject><subject>Enzymes</subject><subject>Flexibility</subject><subject>Helicity</subject><subject>Hydrogen</subject><subject>Kinases</subject><subject>Molecular chains</subject><subject>Molecular structure</subject><subject>Mutants</subject><subject>Mutation</subject><subject>Peptides</subject><subject>Physical Sciences</subject><subject>Physics</subject><subject>Production lines</subject><subject>Proteins</subject><subject>Secretase</subject><subject>Transmembrane domains</subject><subject>Variation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptks9u1DAQxiMEoqXwBggicYBLFv-J7fiCtCoFKlWiBzhbjjPe9eLYi50FlffiNXimetm0ahGnsT3f_Dwz-qrqOUYLTAV-u4m7FLRfbGOABSIIISEeVMdYUtJwgujDO-ej6knOG4QY7Th_XB0RKTkv1-Pq53uXM5jJhVVtYrAxjXpysYBrs9ZhBbl2oV5eXr7O9ZR0yCOMfYlQD3HUJeVd-AZDPcX6z-8GrHXGQTBX-yqrR-ddIS39rzW4EVKBDC6DzvC0emS1z_BsjifV1w9nX04_NRefP56fLi8awwifGqI565nB1mqGMVALXW8H3EptetBaM2Gw4AJ1FoNFUlDSWlK0RKJO4lbQk-rlgbv1Mat5Z1kRxClhlJC2KM4PiiHqjdomN-p0paJ26u9DTCul0-SMB0VaxC3miDJpWyt5rzkRRvYdloQzNhTWu_m3XT_CYCCUnfl70PuZ4NZqFX8ojkiHW14Ab2ZAit93kCc1umzA-7LxuDv0LfBeXKSv_pH-f7r2oDIp5pzA3jaDkdr76KZK7X2kZh-Vshd3B7ktujEOvQYU_sf4</recordid><startdate>20180702</startdate><enddate>20180702</enddate><creator>Götz, Alexander</creator><creator>Scharnagl, Christina</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8741-1694</orcidid><orcidid>https://orcid.org/0000-0003-1434-611X</orcidid></search><sort><creationdate>20180702</creationdate><title>Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease</title><author>Götz, Alexander ; Scharnagl, Christina</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-2a65b5c1ffa511e3fe8bfd149acbeaaa57c176708f1ef097324f2fa5290891473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Alzheimer's disease</topic><topic>Amyloid precursor protein</topic><topic>Biology and Life Sciences</topic><topic>Cleavage</topic><topic>Coupling (molecular)</topic><topic>Docking</topic><topic>Earth Sciences</topic><topic>Efficiency</topic><topic>Enzymes</topic><topic>Flexibility</topic><topic>Helicity</topic><topic>Hydrogen</topic><topic>Kinases</topic><topic>Molecular chains</topic><topic>Molecular structure</topic><topic>Mutants</topic><topic>Mutation</topic><topic>Peptides</topic><topic>Physical Sciences</topic><topic>Physics</topic><topic>Production lines</topic><topic>Proteins</topic><topic>Secretase</topic><topic>Transmembrane domains</topic><topic>Variation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Götz, Alexander</creatorcontrib><creatorcontrib>Scharnagl, Christina</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Götz, Alexander</au><au>Scharnagl, Christina</au><au>Soares, Claudio M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-07-02</date><risdate>2018</risdate><volume>13</volume><issue>7</issue><spage>e0200077</spage><epage>e0200077</epage><pages>e0200077-e0200077</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The mechanism by which familial Alzheimer's disease (FAD) mutations within the transmembrane domain (TMD) of the Amyloid Precursor Protein (APP) affect ε-endoproteolysis is only poorly understood. Thereby, mutations in the cleavage domain reduce ε-efficiency of γ-secretase cleavage and some even shift entry into production lines. Since cleavage occurs within the TMD, a relationship between processing and TMD structure and dynamics seems obvious. Using molecular dynamic simulations, we dissect the dynamic features of wild-type and seven FAD-mutants into local and global components. Mutations consistently enhance hydrogen-bond fluctuations upstream of the ε-cleavage sites but maintain strong helicity there. Dynamic perturbation-response scanning reveals that FAD-mutants target backbone motions utilized in the bound state. Those motions, obscured by large-scale motions in the pre-bound state, provide (i) a dynamic mechanism underlying the proposed coupling between binding and ε-cleavage, (ii) key sites consistent with experimentally determined docking sites, and (iii) the distinction between mutants and wild-type.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29966005</pmid><doi>10.1371/journal.pone.0200077</doi><orcidid>https://orcid.org/0000-0001-8741-1694</orcidid><orcidid>https://orcid.org/0000-0003-1434-611X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-07, Vol.13 (7), p.e0200077-e0200077 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2063253224 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS) Journals Open Access; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Alzheimer's disease Amyloid precursor protein Biology and Life Sciences Cleavage Coupling (molecular) Docking Earth Sciences Efficiency Enzymes Flexibility Helicity Hydrogen Kinases Molecular chains Molecular structure Mutants Mutation Peptides Physical Sciences Physics Production lines Proteins Secretase Transmembrane domains Variation |
title | Dissecting conformational changes in APP's transmembrane domain linked to ε-efficiency in familial Alzheimer's disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-16T23%3A29%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Dissecting%20conformational%20changes%20in%20APP's%20transmembrane%20domain%20linked%20to%20%CE%B5-efficiency%20in%20familial%20Alzheimer's%20disease&rft.jtitle=PloS%20one&rft.au=G%C3%B6tz,%20Alexander&rft.date=2018-07-02&rft.volume=13&rft.issue=7&rft.spage=e0200077&rft.epage=e0200077&rft.pages=e0200077-e0200077&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0200077&rft_dat=%3Cproquest_plos_%3E2063253224%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2063253224&rft_id=info:pmid/29966005&rft_doaj_id=oai_doaj_org_article_2406f160359f4f96ba627c9b8192655d&rfr_iscdi=true |