Classification of crystallization outcomes using deep convolutional neural networks

The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-06, Vol.13 (6), p.e0198883-e0198883
Hauptverfasser: Bruno, Andrew E, Charbonneau, Patrick, Newman, Janet, Snell, Edward H, So, David R, Vanhoucke, Vincent, Watkins, Christopher J, Williams, Shawn, Wilson, Julie
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0198883
container_issue 6
container_start_page e0198883
container_title PloS one
container_volume 13
creator Bruno, Andrew E
Charbonneau, Patrick
Newman, Janet
Snell, Edward H
So, David R
Vanhoucke, Vincent
Watkins, Christopher J
Williams, Shawn
Wilson, Julie
description The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.
doi_str_mv 10.1371/journal.pone.0198883
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2062795906</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A543719951</galeid><doaj_id>oai_doaj_org_article_7621afe3250a43f389b137d5292eab35</doaj_id><sourcerecordid>A543719951</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-630ad2318126ebc0ef7a01135d74f41e56e6f67794d8ebb570d724b4caef4d5e3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiNERUvhHyCIhIToYRd_xHZ8QapWfKxUqRIFrpbjjHe9eOMlTgrl1-N002qDekA-2Bo_89oz82bZC4zmmAr8bhP6ttF-vgsNzBGWZVnSR9kJlpTMOEH08cH5OHsa4wYhRkvOn2THREpSlAU-ya4WXsforDO6c6HJg81NexM77b37M4b6zoQtxLyPrlnlNcAuN6G5Dr4f7rXPG-jb2637Fdof8Vl2ZLWP8HzcT7NvHz98XXyeXVx-Wi7OL2ZGsLKbcYp0TSguMeFQGQRWaIQxZbUobIGBceCWCyGLuoSqYgLVghRVYTTYomZAT7NXe92dD1GN_YiKIE6EZBLxRCz3RB30Ru1at9XtjQraqdtAaFdKt50zHpTgBGsLlDCkC2ppKavU5poRSUBXlCWt9-NrfbWF2kDTpaInotObxq3VKlwrjjAilCaBt6NAG372EDu1ddGA97qB0A__ZiKNR-IBff0P-nB1I7XSqQDX2JDeNYOoOmdF8oiUDCdq_gCVVg1bl-YI1qX4JOFskpCYDn53K93HqJZXX_6fvfw-Zd8csGvQvlvH0URxChZ70LQhxhbsfZMxUoP377qhBu-r0fsp7eXhgO6T7sxO_wIaPf-l</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2062795906</pqid></control><display><type>article</type><title>Classification of crystallization outcomes using deep convolutional neural networks</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Bruno, Andrew E ; Charbonneau, Patrick ; Newman, Janet ; Snell, Edward H ; So, David R ; Vanhoucke, Vincent ; Watkins, Christopher J ; Williams, Shawn ; Wilson, Julie</creator><creatorcontrib>Bruno, Andrew E ; Charbonneau, Patrick ; Newman, Janet ; Snell, Edward H ; So, David R ; Vanhoucke, Vincent ; Watkins, Christopher J ; Williams, Shawn ; Wilson, Julie</creatorcontrib><description>The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0198883</identifier><identifier>PMID: 29924841</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; Automatic classification ; Biological research ; Biology and Life Sciences ; Computer and Information Sciences ; Crystallization ; Crystallography ; Crystallography, X-Ray ; Datasets as Topic ; Experiments ; Identification and classification ; Image Processing, Computer-Assisted ; Information processing ; International conferences ; Learning algorithms ; Machine learning ; Macromolecules ; Methods ; Molecular biology ; Neural networks ; Neural Networks (Computer) ; Physical Sciences ; Proteins ; Recognition ; Research and Analysis Methods ; Scientific classification ; Social Sciences</subject><ispartof>PloS one, 2018-06, Vol.13 (6), p.e0198883-e0198883</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Bruno et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Bruno et al 2018 Bruno et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-630ad2318126ebc0ef7a01135d74f41e56e6f67794d8ebb570d724b4caef4d5e3</citedby><cites>FETCH-LOGICAL-c758t-630ad2318126ebc0ef7a01135d74f41e56e6f67794d8ebb570d724b4caef4d5e3</cites><orcidid>0000-0001-7174-0821 ; 0000-0003-0544-2791 ; 0000-0002-7317-9959 ; 0000-0002-5171-8480 ; 0000-0003-2666-3219</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010233/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6010233/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29924841$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bruno, Andrew E</creatorcontrib><creatorcontrib>Charbonneau, Patrick</creatorcontrib><creatorcontrib>Newman, Janet</creatorcontrib><creatorcontrib>Snell, Edward H</creatorcontrib><creatorcontrib>So, David R</creatorcontrib><creatorcontrib>Vanhoucke, Vincent</creatorcontrib><creatorcontrib>Watkins, Christopher J</creatorcontrib><creatorcontrib>Williams, Shawn</creatorcontrib><creatorcontrib>Wilson, Julie</creatorcontrib><title>Classification of crystallization outcomes using deep convolutional neural networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Automatic classification</subject><subject>Biological research</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Crystallization</subject><subject>Crystallography</subject><subject>Crystallography, X-Ray</subject><subject>Datasets as Topic</subject><subject>Experiments</subject><subject>Identification and classification</subject><subject>Image Processing, Computer-Assisted</subject><subject>Information processing</subject><subject>International conferences</subject><subject>Learning algorithms</subject><subject>Machine learning</subject><subject>Macromolecules</subject><subject>Methods</subject><subject>Molecular biology</subject><subject>Neural networks</subject><subject>Neural Networks (Computer)</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Recognition</subject><subject>Research and Analysis Methods</subject><subject>Scientific classification</subject><subject>Social Sciences</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiNERUvhHyCIhIToYRd_xHZ8QapWfKxUqRIFrpbjjHe9eOMlTgrl1-N002qDekA-2Bo_89oz82bZC4zmmAr8bhP6ttF-vgsNzBGWZVnSR9kJlpTMOEH08cH5OHsa4wYhRkvOn2THREpSlAU-ya4WXsforDO6c6HJg81NexM77b37M4b6zoQtxLyPrlnlNcAuN6G5Dr4f7rXPG-jb2637Fdof8Vl2ZLWP8HzcT7NvHz98XXyeXVx-Wi7OL2ZGsLKbcYp0TSguMeFQGQRWaIQxZbUobIGBceCWCyGLuoSqYgLVghRVYTTYomZAT7NXe92dD1GN_YiKIE6EZBLxRCz3RB30Ru1at9XtjQraqdtAaFdKt50zHpTgBGsLlDCkC2ppKavU5poRSUBXlCWt9-NrfbWF2kDTpaInotObxq3VKlwrjjAilCaBt6NAG372EDu1ddGA97qB0A__ZiKNR-IBff0P-nB1I7XSqQDX2JDeNYOoOmdF8oiUDCdq_gCVVg1bl-YI1qX4JOFskpCYDn53K93HqJZXX_6fvfw-Zd8csGvQvlvH0URxChZ70LQhxhbsfZMxUoP377qhBu-r0fsp7eXhgO6T7sxO_wIaPf-l</recordid><startdate>20180620</startdate><enddate>20180620</enddate><creator>Bruno, Andrew E</creator><creator>Charbonneau, Patrick</creator><creator>Newman, Janet</creator><creator>Snell, Edward H</creator><creator>So, David R</creator><creator>Vanhoucke, Vincent</creator><creator>Watkins, Christopher J</creator><creator>Williams, Shawn</creator><creator>Wilson, Julie</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7174-0821</orcidid><orcidid>https://orcid.org/0000-0003-0544-2791</orcidid><orcidid>https://orcid.org/0000-0002-7317-9959</orcidid><orcidid>https://orcid.org/0000-0002-5171-8480</orcidid><orcidid>https://orcid.org/0000-0003-2666-3219</orcidid></search><sort><creationdate>20180620</creationdate><title>Classification of crystallization outcomes using deep convolutional neural networks</title><author>Bruno, Andrew E ; Charbonneau, Patrick ; Newman, Janet ; Snell, Edward H ; So, David R ; Vanhoucke, Vincent ; Watkins, Christopher J ; Williams, Shawn ; Wilson, Julie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-630ad2318126ebc0ef7a01135d74f41e56e6f67794d8ebb570d724b4caef4d5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Automatic classification</topic><topic>Biological research</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Crystallization</topic><topic>Crystallography</topic><topic>Crystallography, X-Ray</topic><topic>Datasets as Topic</topic><topic>Experiments</topic><topic>Identification and classification</topic><topic>Image Processing, Computer-Assisted</topic><topic>Information processing</topic><topic>International conferences</topic><topic>Learning algorithms</topic><topic>Machine learning</topic><topic>Macromolecules</topic><topic>Methods</topic><topic>Molecular biology</topic><topic>Neural networks</topic><topic>Neural Networks (Computer)</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Recognition</topic><topic>Research and Analysis Methods</topic><topic>Scientific classification</topic><topic>Social Sciences</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bruno, Andrew E</creatorcontrib><creatorcontrib>Charbonneau, Patrick</creatorcontrib><creatorcontrib>Newman, Janet</creatorcontrib><creatorcontrib>Snell, Edward H</creatorcontrib><creatorcontrib>So, David R</creatorcontrib><creatorcontrib>Vanhoucke, Vincent</creatorcontrib><creatorcontrib>Watkins, Christopher J</creatorcontrib><creatorcontrib>Williams, Shawn</creatorcontrib><creatorcontrib>Wilson, Julie</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bruno, Andrew E</au><au>Charbonneau, Patrick</au><au>Newman, Janet</au><au>Snell, Edward H</au><au>So, David R</au><au>Vanhoucke, Vincent</au><au>Watkins, Christopher J</au><au>Williams, Shawn</au><au>Wilson, Julie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Classification of crystallization outcomes using deep convolutional neural networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-06-20</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>e0198883</spage><epage>e0198883</epage><pages>e0198883-e0198883</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Machine Recognition of Crystallization Outcomes (MARCO) initiative has assembled roughly half a million annotated images of macromolecular crystallization experiments from various sources and setups. Here, state-of-the-art machine learning algorithms are trained and tested on different parts of this data set. We find that more than 94% of the test images can be correctly labeled, irrespective of their experimental origin. Because crystal recognition is key to high-density screening and the systematic analysis of crystallization experiments, this approach opens the door to both industrial and fundamental research applications.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29924841</pmid><doi>10.1371/journal.pone.0198883</doi><tpages>e0198883</tpages><orcidid>https://orcid.org/0000-0001-7174-0821</orcidid><orcidid>https://orcid.org/0000-0003-0544-2791</orcidid><orcidid>https://orcid.org/0000-0002-7317-9959</orcidid><orcidid>https://orcid.org/0000-0002-5171-8480</orcidid><orcidid>https://orcid.org/0000-0003-2666-3219</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-06, Vol.13 (6), p.e0198883-e0198883
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2062795906
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Artificial intelligence
Artificial neural networks
Automatic classification
Biological research
Biology and Life Sciences
Computer and Information Sciences
Crystallization
Crystallography
Crystallography, X-Ray
Datasets as Topic
Experiments
Identification and classification
Image Processing, Computer-Assisted
Information processing
International conferences
Learning algorithms
Machine learning
Macromolecules
Methods
Molecular biology
Neural networks
Neural Networks (Computer)
Physical Sciences
Proteins
Recognition
Research and Analysis Methods
Scientific classification
Social Sciences
title Classification of crystallization outcomes using deep convolutional neural networks
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-03T03%3A50%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Classification%20of%20crystallization%20outcomes%20using%20deep%20convolutional%20neural%20networks&rft.jtitle=PloS%20one&rft.au=Bruno,%20Andrew%20E&rft.date=2018-06-20&rft.volume=13&rft.issue=6&rft.spage=e0198883&rft.epage=e0198883&rft.pages=e0198883-e0198883&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0198883&rft_dat=%3Cgale_plos_%3EA543719951%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2062795906&rft_id=info:pmid/29924841&rft_galeid=A543719951&rft_doaj_id=oai_doaj_org_article_7621afe3250a43f389b137d5292eab35&rfr_iscdi=true