Supervised learning reveals circulating biomarker levels diagnostic of hepatocellular carcinoma in a clinically relevant model of non-alcoholic steatohepatitis; An OAD to NASH
Although cirrhosis is a key risk factor for the development of hepatocellular carcinoma (HCC), mounting evidence indicates that in a subset of patients presenting with non-alcoholic steatohepatitis (NASH) HCC manifests in the absence of cirrhosis. Given the sheer size of the ongoing non-alcoholic fa...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-06, Vol.13 (6), p.e0198937-e0198937 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0198937 |
---|---|
container_issue | 6 |
container_start_page | e0198937 |
container_title | PloS one |
container_volume | 13 |
creator | Hwang, Anne Shi, Christopher Zhu, Edward Naaz, Farha Zhou, Ping Rasheed, Zainab Liu, Michelle Jung, Lindsey S Duan, Bin Li, Jingsong Jiang, Kai Paka, Latha Gadhiya, Satishkumar V Dana, Dibyendu Ali, Quaisar Yamin, Michael A Goldberg, Itzhak D Narayan, Prakash |
description | Although cirrhosis is a key risk factor for the development of hepatocellular carcinoma (HCC), mounting evidence indicates that in a subset of patients presenting with non-alcoholic steatohepatitis (NASH) HCC manifests in the absence of cirrhosis. Given the sheer size of the ongoing non-alcoholic fatty liver disease (NAFLD) epidemic and the dismal prognosis associated with late-stage primary liver cancer there is an urgent need for HCC surveillance in the NASH population. Using serum levels of HCC biomarkers as vectors and biopsy-proven HCC or no HCC as outputs / binary classifier, a supervised learning campaign was undertaken to develop a minimally invasive technique for making a diagnosis of HCC in a clinically relevant model of NASH. Adult mice randomized to control diet or a fast food diet (FFD) were followed for up to 14 mo and serum level of a panel of HCC-relevant biomarkers was compared with liver biopsies at 3 and 14 mo. Both NAFLD Activity Score (NAS) and hepatic hydroxyproline content were elevated at 3 and 14 mo on FFD. Picrosirius red staining of liver sections revealed a filigree pattern of fibrillar collagen deposition with no cirrhosis at 14 mo on FFD. Nevertheless, 46% of animals bore one or more tumors on their livers confirmed as HCC in hematoxylin-eosin-stained liver sections. In this training set, receiver operating characteristic (ROC) curves analysis for serum levels of the HCC biomarkers osteopontin (OPN), alpha-fetoprotein (AFP) and Dickkopf-1 (DKK1) returned concordance-statistic/area under ROC curve of ≥ 0.89. Serum levels of OPN (threshold, 218 ng/mL; sensitivity, 82%; specificity, 86%), AFP (136 ng/mL; 91%; 97%) and DKK1 (2.4 ng/mL; 82%; 81%) diagnostic for HCC were confirmed in a test set comprising mice on control diet or FFD and mice subjected to hepatic ischemia-reperfusion injury. These data suggest that levels of circulating OPN, AFP and DKK1 can be used to make a diagnosis of HCC in a clinically relevant model of NASH. |
doi_str_mv | 10.1371/journal.pone.0198937 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2059529035</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A544467198</galeid><doaj_id>oai_doaj_org_article_1518570945cf4c56b70a89b77545c7f9</doaj_id><sourcerecordid>A544467198</sourcerecordid><originalsourceid>FETCH-LOGICAL-c622t-987f7df22ac2f0a479c43ed4b49b7b29939210bdb295b080d2a05845b3a27ec93</originalsourceid><addsrcrecordid>eNqNk9-KEzEUxgdR3HX1DUQDguhFayYzmUxYEMr6ZwuLBavehkwm06amSU0yxX0qX9Ez2-7Syl7IXEw4-X1fTk7OybLnOR7nBcvfrXwfnLTjjXd6jHNe84I9yE5zXpBRRXDx8GB9kj2JcYUxLeqqepydEM7LsmL4NPsz7zc6bE3ULbJaBmfcAgW91dJGpExQvZVpiDXGr2X4qQNgWw2brZEL52MyCvkOLfVGJq-0tSAISMmgjAMFMg5JpKxxRklrr8Eb9NIltPattoPUeTeSVvmlt-AVkwajGzuTTDxHE4dmkw8oefRlMr98mj3qIDX9bP8_y75_-vjt4nJ0Nfs8vZhcjVRFSBrxmnWs7QiRinRYloyrstBt2ZS8YQ1cv-Akx00LS9rgGrdEYlqXtCkkYVrx4ix7ufPdWB_FvtZREEw5JRwXFIjpjmi9XIlNMFCea-GlETcBHxZCBqiO1SKneU0Z5iVVXalo1TAsa0iEUYiwbjjt_f60vlnrVmmXgrRHpsc7zizFwm9FBQ_PyhoM3uwNgv_V65jE2sThNaTTvh_yrnDNCkKGvF_9g95_uz21kHAB4zoP56rBVExoOTQPdBxQ43so-Fq9NgoaszMQPxK8PRIAk_TvtJB9jGI6__r_7OzHMfv6gF1C96Zl9LZPxrt4DJY7UAUfY9DdXZFzLIa5uq2GGOZK7OcKZC8OH-hOdDtIxV9t1CAh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2059529035</pqid></control><display><type>article</type><title>Supervised learning reveals circulating biomarker levels diagnostic of hepatocellular carcinoma in a clinically relevant model of non-alcoholic steatohepatitis; An OAD to NASH</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Hwang, Anne ; Shi, Christopher ; Zhu, Edward ; Naaz, Farha ; Zhou, Ping ; Rasheed, Zainab ; Liu, Michelle ; Jung, Lindsey S ; Duan, Bin ; Li, Jingsong ; Jiang, Kai ; Paka, Latha ; Gadhiya, Satishkumar V ; Dana, Dibyendu ; Ali, Quaisar ; Yamin, Michael A ; Goldberg, Itzhak D ; Narayan, Prakash</creator><contributor>Narayan, Mahesh</contributor><creatorcontrib>Hwang, Anne ; Shi, Christopher ; Zhu, Edward ; Naaz, Farha ; Zhou, Ping ; Rasheed, Zainab ; Liu, Michelle ; Jung, Lindsey S ; Duan, Bin ; Li, Jingsong ; Jiang, Kai ; Paka, Latha ; Gadhiya, Satishkumar V ; Dana, Dibyendu ; Ali, Quaisar ; Yamin, Michael A ; Goldberg, Itzhak D ; Narayan, Prakash ; Narayan, Mahesh</creatorcontrib><description>Although cirrhosis is a key risk factor for the development of hepatocellular carcinoma (HCC), mounting evidence indicates that in a subset of patients presenting with non-alcoholic steatohepatitis (NASH) HCC manifests in the absence of cirrhosis. Given the sheer size of the ongoing non-alcoholic fatty liver disease (NAFLD) epidemic and the dismal prognosis associated with late-stage primary liver cancer there is an urgent need for HCC surveillance in the NASH population. Using serum levels of HCC biomarkers as vectors and biopsy-proven HCC or no HCC as outputs / binary classifier, a supervised learning campaign was undertaken to develop a minimally invasive technique for making a diagnosis of HCC in a clinically relevant model of NASH. Adult mice randomized to control diet or a fast food diet (FFD) were followed for up to 14 mo and serum level of a panel of HCC-relevant biomarkers was compared with liver biopsies at 3 and 14 mo. Both NAFLD Activity Score (NAS) and hepatic hydroxyproline content were elevated at 3 and 14 mo on FFD. Picrosirius red staining of liver sections revealed a filigree pattern of fibrillar collagen deposition with no cirrhosis at 14 mo on FFD. Nevertheless, 46% of animals bore one or more tumors on their livers confirmed as HCC in hematoxylin-eosin-stained liver sections. In this training set, receiver operating characteristic (ROC) curves analysis for serum levels of the HCC biomarkers osteopontin (OPN), alpha-fetoprotein (AFP) and Dickkopf-1 (DKK1) returned concordance-statistic/area under ROC curve of ≥ 0.89. Serum levels of OPN (threshold, 218 ng/mL; sensitivity, 82%; specificity, 86%), AFP (136 ng/mL; 91%; 97%) and DKK1 (2.4 ng/mL; 82%; 81%) diagnostic for HCC were confirmed in a test set comprising mice on control diet or FFD and mice subjected to hepatic ischemia-reperfusion injury. These data suggest that levels of circulating OPN, AFP and DKK1 can be used to make a diagnosis of HCC in a clinically relevant model of NASH.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0198937</identifier><identifier>PMID: 29944670</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Biocompatibility ; Biological markers ; Biology and Life Sciences ; Biomarkers ; Biomarkers, Tumor - blood ; Biomedical materials ; Biopsy ; Carcinoma, Hepatocellular - blood ; Carcinoma, Hepatocellular - diagnosis ; Carcinoma, Hepatocellular - pathology ; Cirrhosis ; Collagen ; Diagnosis ; Diagnostic systems ; Diet ; Disease Models, Animal ; Dkk1 protein ; Epidemics ; Fast food ; Fatty liver ; Gastroenterology ; Health aspects ; Hepatocellular carcinoma ; Humans ; Hydroxyproline ; Identification and classification ; Ischemia ; Liver ; Liver - pathology ; Liver cancer ; Liver cirrhosis ; Liver diseases ; Liver Neoplasms - blood ; Liver Neoplasms - diagnosis ; Liver Neoplasms - pathology ; Male ; Medical diagnosis ; Medical prognosis ; Medical research ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Non-alcoholic Fatty Liver Disease - blood ; Non-alcoholic Fatty Liver Disease - diagnosis ; Non-alcoholic Fatty Liver Disease - pathology ; Osteopontin ; Reperfusion ; Research and Analysis Methods ; Risk factors ; Rodents ; Serum levels ; Supervised learning ; Supervised Machine Learning ; Surveillance ; Tidal bores ; Tumors ; α-Fetoprotein</subject><ispartof>PloS one, 2018-06, Vol.13 (6), p.e0198937-e0198937</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Hwang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Hwang et al 2018 Hwang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c622t-987f7df22ac2f0a479c43ed4b49b7b29939210bdb295b080d2a05845b3a27ec93</citedby><cites>FETCH-LOGICAL-c622t-987f7df22ac2f0a479c43ed4b49b7b29939210bdb295b080d2a05845b3a27ec93</cites><orcidid>0000-0002-7007-0245</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019748/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6019748/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29944670$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Narayan, Mahesh</contributor><creatorcontrib>Hwang, Anne</creatorcontrib><creatorcontrib>Shi, Christopher</creatorcontrib><creatorcontrib>Zhu, Edward</creatorcontrib><creatorcontrib>Naaz, Farha</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Rasheed, Zainab</creatorcontrib><creatorcontrib>Liu, Michelle</creatorcontrib><creatorcontrib>Jung, Lindsey S</creatorcontrib><creatorcontrib>Duan, Bin</creatorcontrib><creatorcontrib>Li, Jingsong</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Paka, Latha</creatorcontrib><creatorcontrib>Gadhiya, Satishkumar V</creatorcontrib><creatorcontrib>Dana, Dibyendu</creatorcontrib><creatorcontrib>Ali, Quaisar</creatorcontrib><creatorcontrib>Yamin, Michael A</creatorcontrib><creatorcontrib>Goldberg, Itzhak D</creatorcontrib><creatorcontrib>Narayan, Prakash</creatorcontrib><title>Supervised learning reveals circulating biomarker levels diagnostic of hepatocellular carcinoma in a clinically relevant model of non-alcoholic steatohepatitis; An OAD to NASH</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Although cirrhosis is a key risk factor for the development of hepatocellular carcinoma (HCC), mounting evidence indicates that in a subset of patients presenting with non-alcoholic steatohepatitis (NASH) HCC manifests in the absence of cirrhosis. Given the sheer size of the ongoing non-alcoholic fatty liver disease (NAFLD) epidemic and the dismal prognosis associated with late-stage primary liver cancer there is an urgent need for HCC surveillance in the NASH population. Using serum levels of HCC biomarkers as vectors and biopsy-proven HCC or no HCC as outputs / binary classifier, a supervised learning campaign was undertaken to develop a minimally invasive technique for making a diagnosis of HCC in a clinically relevant model of NASH. Adult mice randomized to control diet or a fast food diet (FFD) were followed for up to 14 mo and serum level of a panel of HCC-relevant biomarkers was compared with liver biopsies at 3 and 14 mo. Both NAFLD Activity Score (NAS) and hepatic hydroxyproline content were elevated at 3 and 14 mo on FFD. Picrosirius red staining of liver sections revealed a filigree pattern of fibrillar collagen deposition with no cirrhosis at 14 mo on FFD. Nevertheless, 46% of animals bore one or more tumors on their livers confirmed as HCC in hematoxylin-eosin-stained liver sections. In this training set, receiver operating characteristic (ROC) curves analysis for serum levels of the HCC biomarkers osteopontin (OPN), alpha-fetoprotein (AFP) and Dickkopf-1 (DKK1) returned concordance-statistic/area under ROC curve of ≥ 0.89. Serum levels of OPN (threshold, 218 ng/mL; sensitivity, 82%; specificity, 86%), AFP (136 ng/mL; 91%; 97%) and DKK1 (2.4 ng/mL; 82%; 81%) diagnostic for HCC were confirmed in a test set comprising mice on control diet or FFD and mice subjected to hepatic ischemia-reperfusion injury. These data suggest that levels of circulating OPN, AFP and DKK1 can be used to make a diagnosis of HCC in a clinically relevant model of NASH.</description><subject>Animals</subject><subject>Biocompatibility</subject><subject>Biological markers</subject><subject>Biology and Life Sciences</subject><subject>Biomarkers</subject><subject>Biomarkers, Tumor - blood</subject><subject>Biomedical materials</subject><subject>Biopsy</subject><subject>Carcinoma, Hepatocellular - blood</subject><subject>Carcinoma, Hepatocellular - diagnosis</subject><subject>Carcinoma, Hepatocellular - pathology</subject><subject>Cirrhosis</subject><subject>Collagen</subject><subject>Diagnosis</subject><subject>Diagnostic systems</subject><subject>Diet</subject><subject>Disease Models, Animal</subject><subject>Dkk1 protein</subject><subject>Epidemics</subject><subject>Fast food</subject><subject>Fatty liver</subject><subject>Gastroenterology</subject><subject>Health aspects</subject><subject>Hepatocellular carcinoma</subject><subject>Humans</subject><subject>Hydroxyproline</subject><subject>Identification and classification</subject><subject>Ischemia</subject><subject>Liver</subject><subject>Liver - pathology</subject><subject>Liver cancer</subject><subject>Liver cirrhosis</subject><subject>Liver diseases</subject><subject>Liver Neoplasms - blood</subject><subject>Liver Neoplasms - diagnosis</subject><subject>Liver Neoplasms - pathology</subject><subject>Male</subject><subject>Medical diagnosis</subject><subject>Medical prognosis</subject><subject>Medical research</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Non-alcoholic Fatty Liver Disease - blood</subject><subject>Non-alcoholic Fatty Liver Disease - diagnosis</subject><subject>Non-alcoholic Fatty Liver Disease - pathology</subject><subject>Osteopontin</subject><subject>Reperfusion</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Rodents</subject><subject>Serum levels</subject><subject>Supervised learning</subject><subject>Supervised Machine Learning</subject><subject>Surveillance</subject><subject>Tidal bores</subject><subject>Tumors</subject><subject>α-Fetoprotein</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-KEzEUxgdR3HX1DUQDguhFayYzmUxYEMr6ZwuLBavehkwm06amSU0yxX0qX9Ez2-7Syl7IXEw4-X1fTk7OybLnOR7nBcvfrXwfnLTjjXd6jHNe84I9yE5zXpBRRXDx8GB9kj2JcYUxLeqqepydEM7LsmL4NPsz7zc6bE3ULbJaBmfcAgW91dJGpExQvZVpiDXGr2X4qQNgWw2brZEL52MyCvkOLfVGJq-0tSAISMmgjAMFMg5JpKxxRklrr8Eb9NIltPattoPUeTeSVvmlt-AVkwajGzuTTDxHE4dmkw8oefRlMr98mj3qIDX9bP8_y75_-vjt4nJ0Nfs8vZhcjVRFSBrxmnWs7QiRinRYloyrstBt2ZS8YQ1cv-Akx00LS9rgGrdEYlqXtCkkYVrx4ix7ufPdWB_FvtZREEw5JRwXFIjpjmi9XIlNMFCea-GlETcBHxZCBqiO1SKneU0Z5iVVXalo1TAsa0iEUYiwbjjt_f60vlnrVmmXgrRHpsc7zizFwm9FBQ_PyhoM3uwNgv_V65jE2sThNaTTvh_yrnDNCkKGvF_9g95_uz21kHAB4zoP56rBVExoOTQPdBxQ43so-Fq9NgoaszMQPxK8PRIAk_TvtJB9jGI6__r_7OzHMfv6gF1C96Zl9LZPxrt4DJY7UAUfY9DdXZFzLIa5uq2GGOZK7OcKZC8OH-hOdDtIxV9t1CAh</recordid><startdate>20180626</startdate><enddate>20180626</enddate><creator>Hwang, Anne</creator><creator>Shi, Christopher</creator><creator>Zhu, Edward</creator><creator>Naaz, Farha</creator><creator>Zhou, Ping</creator><creator>Rasheed, Zainab</creator><creator>Liu, Michelle</creator><creator>Jung, Lindsey S</creator><creator>Duan, Bin</creator><creator>Li, Jingsong</creator><creator>Jiang, Kai</creator><creator>Paka, Latha</creator><creator>Gadhiya, Satishkumar V</creator><creator>Dana, Dibyendu</creator><creator>Ali, Quaisar</creator><creator>Yamin, Michael A</creator><creator>Goldberg, Itzhak D</creator><creator>Narayan, Prakash</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-7007-0245</orcidid></search><sort><creationdate>20180626</creationdate><title>Supervised learning reveals circulating biomarker levels diagnostic of hepatocellular carcinoma in a clinically relevant model of non-alcoholic steatohepatitis; An OAD to NASH</title><author>Hwang, Anne ; Shi, Christopher ; Zhu, Edward ; Naaz, Farha ; Zhou, Ping ; Rasheed, Zainab ; Liu, Michelle ; Jung, Lindsey S ; Duan, Bin ; Li, Jingsong ; Jiang, Kai ; Paka, Latha ; Gadhiya, Satishkumar V ; Dana, Dibyendu ; Ali, Quaisar ; Yamin, Michael A ; Goldberg, Itzhak D ; Narayan, Prakash</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c622t-987f7df22ac2f0a479c43ed4b49b7b29939210bdb295b080d2a05845b3a27ec93</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Animals</topic><topic>Biocompatibility</topic><topic>Biological markers</topic><topic>Biology and Life Sciences</topic><topic>Biomarkers</topic><topic>Biomarkers, Tumor - blood</topic><topic>Biomedical materials</topic><topic>Biopsy</topic><topic>Carcinoma, Hepatocellular - blood</topic><topic>Carcinoma, Hepatocellular - diagnosis</topic><topic>Carcinoma, Hepatocellular - pathology</topic><topic>Cirrhosis</topic><topic>Collagen</topic><topic>Diagnosis</topic><topic>Diagnostic systems</topic><topic>Diet</topic><topic>Disease Models, Animal</topic><topic>Dkk1 protein</topic><topic>Epidemics</topic><topic>Fast food</topic><topic>Fatty liver</topic><topic>Gastroenterology</topic><topic>Health aspects</topic><topic>Hepatocellular carcinoma</topic><topic>Humans</topic><topic>Hydroxyproline</topic><topic>Identification and classification</topic><topic>Ischemia</topic><topic>Liver</topic><topic>Liver - pathology</topic><topic>Liver cancer</topic><topic>Liver cirrhosis</topic><topic>Liver diseases</topic><topic>Liver Neoplasms - blood</topic><topic>Liver Neoplasms - diagnosis</topic><topic>Liver Neoplasms - pathology</topic><topic>Male</topic><topic>Medical diagnosis</topic><topic>Medical prognosis</topic><topic>Medical research</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Non-alcoholic Fatty Liver Disease - blood</topic><topic>Non-alcoholic Fatty Liver Disease - diagnosis</topic><topic>Non-alcoholic Fatty Liver Disease - pathology</topic><topic>Osteopontin</topic><topic>Reperfusion</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Rodents</topic><topic>Serum levels</topic><topic>Supervised learning</topic><topic>Supervised Machine Learning</topic><topic>Surveillance</topic><topic>Tidal bores</topic><topic>Tumors</topic><topic>α-Fetoprotein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hwang, Anne</creatorcontrib><creatorcontrib>Shi, Christopher</creatorcontrib><creatorcontrib>Zhu, Edward</creatorcontrib><creatorcontrib>Naaz, Farha</creatorcontrib><creatorcontrib>Zhou, Ping</creatorcontrib><creatorcontrib>Rasheed, Zainab</creatorcontrib><creatorcontrib>Liu, Michelle</creatorcontrib><creatorcontrib>Jung, Lindsey S</creatorcontrib><creatorcontrib>Duan, Bin</creatorcontrib><creatorcontrib>Li, Jingsong</creatorcontrib><creatorcontrib>Jiang, Kai</creatorcontrib><creatorcontrib>Paka, Latha</creatorcontrib><creatorcontrib>Gadhiya, Satishkumar V</creatorcontrib><creatorcontrib>Dana, Dibyendu</creatorcontrib><creatorcontrib>Ali, Quaisar</creatorcontrib><creatorcontrib>Yamin, Michael A</creatorcontrib><creatorcontrib>Goldberg, Itzhak D</creatorcontrib><creatorcontrib>Narayan, Prakash</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection (ProQuest)</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hwang, Anne</au><au>Shi, Christopher</au><au>Zhu, Edward</au><au>Naaz, Farha</au><au>Zhou, Ping</au><au>Rasheed, Zainab</au><au>Liu, Michelle</au><au>Jung, Lindsey S</au><au>Duan, Bin</au><au>Li, Jingsong</au><au>Jiang, Kai</au><au>Paka, Latha</au><au>Gadhiya, Satishkumar V</au><au>Dana, Dibyendu</au><au>Ali, Quaisar</au><au>Yamin, Michael A</au><au>Goldberg, Itzhak D</au><au>Narayan, Prakash</au><au>Narayan, Mahesh</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supervised learning reveals circulating biomarker levels diagnostic of hepatocellular carcinoma in a clinically relevant model of non-alcoholic steatohepatitis; An OAD to NASH</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-06-26</date><risdate>2018</risdate><volume>13</volume><issue>6</issue><spage>e0198937</spage><epage>e0198937</epage><pages>e0198937-e0198937</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Although cirrhosis is a key risk factor for the development of hepatocellular carcinoma (HCC), mounting evidence indicates that in a subset of patients presenting with non-alcoholic steatohepatitis (NASH) HCC manifests in the absence of cirrhosis. Given the sheer size of the ongoing non-alcoholic fatty liver disease (NAFLD) epidemic and the dismal prognosis associated with late-stage primary liver cancer there is an urgent need for HCC surveillance in the NASH population. Using serum levels of HCC biomarkers as vectors and biopsy-proven HCC or no HCC as outputs / binary classifier, a supervised learning campaign was undertaken to develop a minimally invasive technique for making a diagnosis of HCC in a clinically relevant model of NASH. Adult mice randomized to control diet or a fast food diet (FFD) were followed for up to 14 mo and serum level of a panel of HCC-relevant biomarkers was compared with liver biopsies at 3 and 14 mo. Both NAFLD Activity Score (NAS) and hepatic hydroxyproline content were elevated at 3 and 14 mo on FFD. Picrosirius red staining of liver sections revealed a filigree pattern of fibrillar collagen deposition with no cirrhosis at 14 mo on FFD. Nevertheless, 46% of animals bore one or more tumors on their livers confirmed as HCC in hematoxylin-eosin-stained liver sections. In this training set, receiver operating characteristic (ROC) curves analysis for serum levels of the HCC biomarkers osteopontin (OPN), alpha-fetoprotein (AFP) and Dickkopf-1 (DKK1) returned concordance-statistic/area under ROC curve of ≥ 0.89. Serum levels of OPN (threshold, 218 ng/mL; sensitivity, 82%; specificity, 86%), AFP (136 ng/mL; 91%; 97%) and DKK1 (2.4 ng/mL; 82%; 81%) diagnostic for HCC were confirmed in a test set comprising mice on control diet or FFD and mice subjected to hepatic ischemia-reperfusion injury. These data suggest that levels of circulating OPN, AFP and DKK1 can be used to make a diagnosis of HCC in a clinically relevant model of NASH.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29944670</pmid><doi>10.1371/journal.pone.0198937</doi><tpages>e0198937</tpages><orcidid>https://orcid.org/0000-0002-7007-0245</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-06, Vol.13 (6), p.e0198937-e0198937 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2059529035 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Animals Biocompatibility Biological markers Biology and Life Sciences Biomarkers Biomarkers, Tumor - blood Biomedical materials Biopsy Carcinoma, Hepatocellular - blood Carcinoma, Hepatocellular - diagnosis Carcinoma, Hepatocellular - pathology Cirrhosis Collagen Diagnosis Diagnostic systems Diet Disease Models, Animal Dkk1 protein Epidemics Fast food Fatty liver Gastroenterology Health aspects Hepatocellular carcinoma Humans Hydroxyproline Identification and classification Ischemia Liver Liver - pathology Liver cancer Liver cirrhosis Liver diseases Liver Neoplasms - blood Liver Neoplasms - diagnosis Liver Neoplasms - pathology Male Medical diagnosis Medical prognosis Medical research Medicine and Health Sciences Mice Mice, Inbred C57BL Non-alcoholic Fatty Liver Disease - blood Non-alcoholic Fatty Liver Disease - diagnosis Non-alcoholic Fatty Liver Disease - pathology Osteopontin Reperfusion Research and Analysis Methods Risk factors Rodents Serum levels Supervised learning Supervised Machine Learning Surveillance Tidal bores Tumors α-Fetoprotein |
title | Supervised learning reveals circulating biomarker levels diagnostic of hepatocellular carcinoma in a clinically relevant model of non-alcoholic steatohepatitis; An OAD to NASH |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T09%3A52%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supervised%20learning%20reveals%20circulating%20biomarker%20levels%20diagnostic%20of%20hepatocellular%20carcinoma%20in%20a%20clinically%20relevant%20model%20of%20non-alcoholic%20steatohepatitis;%20An%20OAD%20to%20NASH&rft.jtitle=PloS%20one&rft.au=Hwang,%20Anne&rft.date=2018-06-26&rft.volume=13&rft.issue=6&rft.spage=e0198937&rft.epage=e0198937&rft.pages=e0198937-e0198937&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0198937&rft_dat=%3Cgale_plos_%3EA544467198%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2059529035&rft_id=info:pmid/29944670&rft_galeid=A544467198&rft_doaj_id=oai_doaj_org_article_1518570945cf4c56b70a89b77545c7f9&rfr_iscdi=true |