Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo

Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin fo...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2018-04, Vol.14 (4), p.e1007339-e1007339
Hauptverfasser: Schaefer, Kristina N, Bonello, Teresa T, Zhang, Shiping, Williams, Clara E, Roberts, David M, McKay, Daniel J, Peifer, Mark
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007339
container_issue 4
container_start_page e1007339
container_title PLoS genetics
container_volume 14
creator Schaefer, Kristina N
Bonello, Teresa T
Zhang, Shiping
Williams, Clara E
Roberts, David M
McKay, Daniel J
Peifer, Mark
description Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.
doi_str_mv 10.1371/journal.pgen.1007339
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2056434100</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536809396</galeid><doaj_id>oai_doaj_org_article_9098cfc7b0864aefb1d87fc3c7ad84fd</doaj_id><sourcerecordid>A536809396</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-23884884966a84a1656b3a3300feccac37963aede5f233fb48a9c3c98f0ef7a23</originalsourceid><addsrcrecordid>eNqVk9tq3DAQhk1padK0b1BaQ6G0kN3KlmzLN4UQegiEBpoeLsVYHnkVZGljyUuSN-nbVs5u0mzJRYsNtuXv_2c0o0mS5xmZZ7TK3p25cbBg5ssO7TwjpKK0fpDsZkVBZxUj7OGd953kifdnhNCC19XjZCevS5YVJdlNfp2OywF6Z1COBoYUvMe-MZepU2lYYNpggJmEgFbbtEUfhlEG7WwqXb80eJGCba9BVAplmGQ_bUi97mJu2nZpRHXwqXEyfl_BpN1P_8Tz-gr3r00g-q50uExjoJVeuafJIwXG47PNcy_5_vHDt8PPs-OTT0eHB8czWeVlmOWUcxbvuiyBM8jKomwoUEpIzEeCpFVdUsAWC5VTqhrGoZZU1lwRVBXkdC95ufZdGufFpqpe5KQoGWWxsJE4WhOtgzOxHHQPw6VwoMX1ghs6AUPQ0qCoSc2lklVDeMkAVZO1vFIxXgUtZ6qNXu830camx1aiDQOYLdPtP1YvROdWoqizvOJFNHizMRjc-RgbInrtJRoDFt045Z0zVhGeZRF99Rd6_-42VAdxA9oqF-PKyVQcFLTkpKaxgnvJ_B4qXi32WjqLSsf1LcHbLUFkAl6EDkbvxdHp1_9gv_w7e_Jjm319h10gmLDwzozTIfTbIFuDcnDeD6huG5IRMU3bTeXENG1iM21R9uJuM29FN-NFfwMNYicT</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2056434100</pqid></control><display><type>article</type><title>Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Schaefer, Kristina N ; Bonello, Teresa T ; Zhang, Shiping ; Williams, Clara E ; Roberts, David M ; McKay, Daniel J ; Peifer, Mark</creator><contributor>Cadigan, Ken M.</contributor><creatorcontrib>Schaefer, Kristina N ; Bonello, Teresa T ; Zhang, Shiping ; Williams, Clara E ; Roberts, David M ; McKay, Daniel J ; Peifer, Mark ; Cadigan, Ken M.</creatorcontrib><description>Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007339</identifier><identifier>PMID: 29641560</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenomatous polyposis coli ; Animals ; Animals, Genetically Modified ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - chemistry ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - genetics ; Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - metabolism ; Armadillo Domain Proteins - chemistry ; Armadillo Domain Proteins - genetics ; Armadillo Domain Proteins - metabolism ; Axin Protein - chemistry ; Axin Protein - genetics ; Axin Protein - metabolism ; Axin Signaling Complex - chemistry ; Axin Signaling Complex - genetics ; Axin Signaling Complex - metabolism ; Binding proteins ; Biology and Life Sciences ; Cancer ; Cell Line ; Colorectal cancer ; Curricula ; Dishevelled protein ; Drosophila ; Drosophila melanogaster - embryology ; Drosophila melanogaster - genetics ; Drosophila melanogaster - metabolism ; Drosophila Proteins - chemistry ; Drosophila Proteins - genetics ; Drosophila Proteins - metabolism ; Embryogenesis ; Embryos ; Funding ; Genes ; Genetic disorders ; Genetic engineering ; Glycogen ; Glycogen synthase ; Glycogen Synthase Kinase 3 - genetics ; Glycogen Synthase Kinase 3 - metabolism ; Health aspects ; Homeostasis ; Insects ; Kinases ; Localization ; Medicine and Health Sciences ; Microscopy ; Molecular biology ; Multiprotein Complexes - chemistry ; Multiprotein Complexes - genetics ; Multiprotein Complexes - metabolism ; Phosphorylation ; Polymerization ; Polyps ; Proteins ; Proteolysis ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Regulation ; Research and Analysis Methods ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Stem cells ; Stoichiometry ; Transcription Factors - chemistry ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic ; Tumor Suppressor Proteins - chemistry ; Tumor Suppressor Proteins - genetics ; Tumor Suppressor Proteins - metabolism ; Ubiquitination ; Wnt protein ; Wnt proteins ; Wnt Signaling Pathway ; Wnt1 Protein - genetics ; Wnt1 Protein - metabolism ; β-Catenin</subject><ispartof>PLoS genetics, 2018-04, Vol.14 (4), p.e1007339-e1007339</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, et al. (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14(4): e1007339. https://doi.org/10.1371/journal.pgen.1007339</rights><rights>2018 Schaefer et al 2018 Schaefer et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Schaefer KN, Bonello TT, Zhang S, Williams CE, Roberts DM, McKay DJ, et al. (2018) Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo. PLoS Genet 14(4): e1007339. https://doi.org/10.1371/journal.pgen.1007339</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-23884884966a84a1656b3a3300feccac37963aede5f233fb48a9c3c98f0ef7a23</citedby><cites>FETCH-LOGICAL-c726t-23884884966a84a1656b3a3300feccac37963aede5f233fb48a9c3c98f0ef7a23</cites><orcidid>0000-0003-1412-3987</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912785/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5912785/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29641560$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Cadigan, Ken M.</contributor><creatorcontrib>Schaefer, Kristina N</creatorcontrib><creatorcontrib>Bonello, Teresa T</creatorcontrib><creatorcontrib>Zhang, Shiping</creatorcontrib><creatorcontrib>Williams, Clara E</creatorcontrib><creatorcontrib>Roberts, David M</creatorcontrib><creatorcontrib>McKay, Daniel J</creatorcontrib><creatorcontrib>Peifer, Mark</creatorcontrib><title>Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.</description><subject>Adenomatous polyposis coli</subject><subject>Animals</subject><subject>Animals, Genetically Modified</subject><subject>Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - chemistry</subject><subject>Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - genetics</subject><subject>Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - metabolism</subject><subject>Armadillo Domain Proteins - chemistry</subject><subject>Armadillo Domain Proteins - genetics</subject><subject>Armadillo Domain Proteins - metabolism</subject><subject>Axin Protein - chemistry</subject><subject>Axin Protein - genetics</subject><subject>Axin Protein - metabolism</subject><subject>Axin Signaling Complex - chemistry</subject><subject>Axin Signaling Complex - genetics</subject><subject>Axin Signaling Complex - metabolism</subject><subject>Binding proteins</subject><subject>Biology and Life Sciences</subject><subject>Cancer</subject><subject>Cell Line</subject><subject>Colorectal cancer</subject><subject>Curricula</subject><subject>Dishevelled protein</subject><subject>Drosophila</subject><subject>Drosophila melanogaster - embryology</subject><subject>Drosophila melanogaster - genetics</subject><subject>Drosophila melanogaster - metabolism</subject><subject>Drosophila Proteins - chemistry</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - metabolism</subject><subject>Embryogenesis</subject><subject>Embryos</subject><subject>Funding</subject><subject>Genes</subject><subject>Genetic disorders</subject><subject>Genetic engineering</subject><subject>Glycogen</subject><subject>Glycogen synthase</subject><subject>Glycogen Synthase Kinase 3 - genetics</subject><subject>Glycogen Synthase Kinase 3 - metabolism</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Insects</subject><subject>Kinases</subject><subject>Localization</subject><subject>Medicine and Health Sciences</subject><subject>Microscopy</subject><subject>Molecular biology</subject><subject>Multiprotein Complexes - chemistry</subject><subject>Multiprotein Complexes - genetics</subject><subject>Multiprotein Complexes - metabolism</subject><subject>Phosphorylation</subject><subject>Polymerization</subject><subject>Polyps</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Regulation</subject><subject>Research and Analysis Methods</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Stem cells</subject><subject>Stoichiometry</subject><subject>Transcription Factors - chemistry</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><subject>Tumor Suppressor Proteins - chemistry</subject><subject>Tumor Suppressor Proteins - genetics</subject><subject>Tumor Suppressor Proteins - metabolism</subject><subject>Ubiquitination</subject><subject>Wnt protein</subject><subject>Wnt proteins</subject><subject>Wnt Signaling Pathway</subject><subject>Wnt1 Protein - genetics</subject><subject>Wnt1 Protein - metabolism</subject><subject>β-Catenin</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk9tq3DAQhk1padK0b1BaQ6G0kN3KlmzLN4UQegiEBpoeLsVYHnkVZGljyUuSN-nbVs5u0mzJRYsNtuXv_2c0o0mS5xmZZ7TK3p25cbBg5ssO7TwjpKK0fpDsZkVBZxUj7OGd953kifdnhNCC19XjZCevS5YVJdlNfp2OywF6Z1COBoYUvMe-MZepU2lYYNpggJmEgFbbtEUfhlEG7WwqXb80eJGCba9BVAplmGQ_bUi97mJu2nZpRHXwqXEyfl_BpN1P_8Tz-gr3r00g-q50uExjoJVeuafJIwXG47PNcy_5_vHDt8PPs-OTT0eHB8czWeVlmOWUcxbvuiyBM8jKomwoUEpIzEeCpFVdUsAWC5VTqhrGoZZU1lwRVBXkdC95ufZdGufFpqpe5KQoGWWxsJE4WhOtgzOxHHQPw6VwoMX1ghs6AUPQ0qCoSc2lklVDeMkAVZO1vFIxXgUtZ6qNXu830camx1aiDQOYLdPtP1YvROdWoqizvOJFNHizMRjc-RgbInrtJRoDFt045Z0zVhGeZRF99Rd6_-42VAdxA9oqF-PKyVQcFLTkpKaxgnvJ_B4qXi32WjqLSsf1LcHbLUFkAl6EDkbvxdHp1_9gv_w7e_Jjm319h10gmLDwzozTIfTbIFuDcnDeD6huG5IRMU3bTeXENG1iM21R9uJuM29FN-NFfwMNYicT</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Schaefer, Kristina N</creator><creator>Bonello, Teresa T</creator><creator>Zhang, Shiping</creator><creator>Williams, Clara E</creator><creator>Roberts, David M</creator><creator>McKay, Daniel J</creator><creator>Peifer, Mark</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1412-3987</orcidid></search><sort><creationdate>20180411</creationdate><title>Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo</title><author>Schaefer, Kristina N ; Bonello, Teresa T ; Zhang, Shiping ; Williams, Clara E ; Roberts, David M ; McKay, Daniel J ; Peifer, Mark</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-23884884966a84a1656b3a3300feccac37963aede5f233fb48a9c3c98f0ef7a23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenomatous polyposis coli</topic><topic>Animals</topic><topic>Animals, Genetically Modified</topic><topic>Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - chemistry</topic><topic>Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - genetics</topic><topic>Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - metabolism</topic><topic>Armadillo Domain Proteins - chemistry</topic><topic>Armadillo Domain Proteins - genetics</topic><topic>Armadillo Domain Proteins - metabolism</topic><topic>Axin Protein - chemistry</topic><topic>Axin Protein - genetics</topic><topic>Axin Protein - metabolism</topic><topic>Axin Signaling Complex - chemistry</topic><topic>Axin Signaling Complex - genetics</topic><topic>Axin Signaling Complex - metabolism</topic><topic>Binding proteins</topic><topic>Biology and Life Sciences</topic><topic>Cancer</topic><topic>Cell Line</topic><topic>Colorectal cancer</topic><topic>Curricula</topic><topic>Dishevelled protein</topic><topic>Drosophila</topic><topic>Drosophila melanogaster - embryology</topic><topic>Drosophila melanogaster - genetics</topic><topic>Drosophila melanogaster - metabolism</topic><topic>Drosophila Proteins - chemistry</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - metabolism</topic><topic>Embryogenesis</topic><topic>Embryos</topic><topic>Funding</topic><topic>Genes</topic><topic>Genetic disorders</topic><topic>Genetic engineering</topic><topic>Glycogen</topic><topic>Glycogen synthase</topic><topic>Glycogen Synthase Kinase 3 - genetics</topic><topic>Glycogen Synthase Kinase 3 - metabolism</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Insects</topic><topic>Kinases</topic><topic>Localization</topic><topic>Medicine and Health Sciences</topic><topic>Microscopy</topic><topic>Molecular biology</topic><topic>Multiprotein Complexes - chemistry</topic><topic>Multiprotein Complexes - genetics</topic><topic>Multiprotein Complexes - metabolism</topic><topic>Phosphorylation</topic><topic>Polymerization</topic><topic>Polyps</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Regulation</topic><topic>Research and Analysis Methods</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Stem cells</topic><topic>Stoichiometry</topic><topic>Transcription Factors - chemistry</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><topic>Tumor Suppressor Proteins - chemistry</topic><topic>Tumor Suppressor Proteins - genetics</topic><topic>Tumor Suppressor Proteins - metabolism</topic><topic>Ubiquitination</topic><topic>Wnt protein</topic><topic>Wnt proteins</topic><topic>Wnt Signaling Pathway</topic><topic>Wnt1 Protein - genetics</topic><topic>Wnt1 Protein - metabolism</topic><topic>β-Catenin</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Schaefer, Kristina N</creatorcontrib><creatorcontrib>Bonello, Teresa T</creatorcontrib><creatorcontrib>Zhang, Shiping</creatorcontrib><creatorcontrib>Williams, Clara E</creatorcontrib><creatorcontrib>Roberts, David M</creatorcontrib><creatorcontrib>McKay, Daniel J</creatorcontrib><creatorcontrib>Peifer, Mark</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Schaefer, Kristina N</au><au>Bonello, Teresa T</au><au>Zhang, Shiping</au><au>Williams, Clara E</au><au>Roberts, David M</au><au>McKay, Daniel J</au><au>Peifer, Mark</au><au>Cadigan, Ken M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>e1007339</spage><epage>e1007339</epage><pages>e1007339-e1007339</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Wnt signaling provides a paradigm for cell-cell signals that regulate embryonic development and stem cell homeostasis and are inappropriately activated in cancers. The tumor suppressors APC and Axin form the core of the multiprotein destruction complex, which targets the Wnt-effector beta-catenin for phosphorylation, ubiquitination and destruction. Based on earlier work, we hypothesize that the destruction complex is a supramolecular entity that self-assembles by Axin and APC polymerization, and that regulating assembly and stability of the destruction complex underlie its function. We tested this hypothesis in Drosophila embryos, a premier model of Wnt signaling. Combining biochemistry, genetic tools to manipulate Axin and APC2 levels, advanced imaging and molecule counting, we defined destruction complex assembly, stoichiometry, and localization in vivo, and its downregulation in response to Wnt signaling. Our findings challenge and revise current models of destruction complex function. Endogenous Axin and APC2 proteins and their antagonist Dishevelled accumulate at roughly similar levels, suggesting competition for binding may be critical. By expressing Axin:GFP at near endogenous levels we found that in the absence of Wnt signals, Axin and APC2 co-assemble into large cytoplasmic complexes containing tens to hundreds of Axin proteins. Wnt signals trigger recruitment of these to the membrane, while cytoplasmic Axin levels increase, suggesting altered assembly/disassembly. Glycogen synthase kinase3 regulates destruction complex recruitment to the membrane and release of Armadillo/beta-catenin from the destruction complex. Manipulating Axin or APC2 levels had no effect on destruction complex activity when Wnt signals were absent, but, surprisingly, had opposite effects on the destruction complex when Wnt signals were present. Elevating Axin made the complex more resistant to inactivation, while elevating APC2 levels enhanced inactivation. Our data suggest both absolute levels and the ratio of these two core components affect destruction complex function, supporting models in which competition among Axin partners determines destruction complex activity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29641560</pmid><doi>10.1371/journal.pgen.1007339</doi><orcidid>https://orcid.org/0000-0003-1412-3987</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2018-04, Vol.14 (4), p.e1007339-e1007339
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2056434100
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adenomatous polyposis coli
Animals
Animals, Genetically Modified
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - chemistry
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - genetics
Apc1 Subunit, Anaphase-Promoting Complex-Cyclosome - metabolism
Armadillo Domain Proteins - chemistry
Armadillo Domain Proteins - genetics
Armadillo Domain Proteins - metabolism
Axin Protein - chemistry
Axin Protein - genetics
Axin Protein - metabolism
Axin Signaling Complex - chemistry
Axin Signaling Complex - genetics
Axin Signaling Complex - metabolism
Binding proteins
Biology and Life Sciences
Cancer
Cell Line
Colorectal cancer
Curricula
Dishevelled protein
Drosophila
Drosophila melanogaster - embryology
Drosophila melanogaster - genetics
Drosophila melanogaster - metabolism
Drosophila Proteins - chemistry
Drosophila Proteins - genetics
Drosophila Proteins - metabolism
Embryogenesis
Embryos
Funding
Genes
Genetic disorders
Genetic engineering
Glycogen
Glycogen synthase
Glycogen Synthase Kinase 3 - genetics
Glycogen Synthase Kinase 3 - metabolism
Health aspects
Homeostasis
Insects
Kinases
Localization
Medicine and Health Sciences
Microscopy
Molecular biology
Multiprotein Complexes - chemistry
Multiprotein Complexes - genetics
Multiprotein Complexes - metabolism
Phosphorylation
Polymerization
Polyps
Proteins
Proteolysis
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Regulation
Research and Analysis Methods
RNA, Messenger - genetics
RNA, Messenger - metabolism
Stem cells
Stoichiometry
Transcription Factors - chemistry
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
Tumor Suppressor Proteins - chemistry
Tumor Suppressor Proteins - genetics
Tumor Suppressor Proteins - metabolism
Ubiquitination
Wnt protein
Wnt proteins
Wnt Signaling Pathway
Wnt1 Protein - genetics
Wnt1 Protein - metabolism
β-Catenin
title Supramolecular assembly of the beta-catenin destruction complex and the effect of Wnt signaling on its localization, molecular size, and activity in vivo
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T06%3A34%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Supramolecular%20assembly%20of%20the%20beta-catenin%20destruction%20complex%20and%20the%20effect%20of%20Wnt%20signaling%20on%20its%20localization,%20molecular%20size,%20and%20activity%20in%20vivo&rft.jtitle=PLoS%20genetics&rft.au=Schaefer,%20Kristina%20N&rft.date=2018-04-11&rft.volume=14&rft.issue=4&rft.spage=e1007339&rft.epage=e1007339&rft.pages=e1007339-e1007339&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007339&rft_dat=%3Cgale_plos_%3EA536809396%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2056434100&rft_id=info:pmid/29641560&rft_galeid=A536809396&rft_doaj_id=oai_doaj_org_article_9098cfc7b0864aefb1d87fc3c7ad84fd&rfr_iscdi=true