Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis
Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-05, Vol.14 (5), p.e1007389-e1007389 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007389 |
---|---|
container_issue | 5 |
container_start_page | e1007389 |
container_title | PLoS genetics |
container_volume | 14 |
creator | Wei, Wenhui Srinivas, Swaminath Lin, Jingxia Tang, Zichen Wang, Shihua Ullah, Saif Kota, Vishnu Goutham Feng, Youjun |
description | Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance. |
doi_str_mv | 10.1371/journal.pgen.1007389 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2049970884</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541064859</galeid><doaj_id>oai_doaj_org_article_d18f20d687dd4bdcbb674af28e62cb97</doaj_id><sourcerecordid>A541064859</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-69bab436fe43f8532ea2b95251b36455564e1d156e183ce9a985fa99dc80baea3</originalsourceid><addsrcrecordid>eNqVk11rFDEUhgdRbK3-A9EBQRTcNZl8THIjlPVrobVQtbchkzmzm2UmWZMZqf_erDstO9ILJRcJyfO-yTknJ8ueYjTHpMRvN34ITrfz7QrcHCNUEiHvZceYMTIrKaL3D9ZH2aMYNwgRJmT5MDsqZMkEKtBxdvUeGuusW-XLxeXs3L_Jtcut64N10Zrc-NbG3ro8QEwL7QzkNfQQOuu06_Mm-C4_90FfQ9vq3MfWQxLGx9mDRrcRnozzSfb944dvi8-zs4tPy8Xp2cyUBe9nXFa6ooQ3QEkjGClAF5VkBcMV4ZQxxingGjMOWBADUkvBGi1lbQSqNGhykj3f-25bH9WYkqgKRKUskRA0Ecs9UXu9UdtgOx1-Ka-t-rPhw0rp0FvTgqqxaApUc1HWNa1qU1W8pLopBPDCVLJMXu_G24aqg9pAypNuJ6bTE2fXauV_KiYFYZwkg1ejQfA_Boi96mw0u9Q58MPu3UQWQmKOEvriL_Tu6EZqpVMA1jU-3Wt2puqUUYw4FUwman4HlUYNnTXepS-Q9ieC1xNBYnq47ld6iFEtv17-B_vl39mLqyn78oBdg277dfTt0Fvv4hSke9AEH2OA5rYgGKldq9xkTu1aRY2tkmTPDot5K7rpDfIb2UsNyg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049970884</pqid></control><display><type>article</type><title>Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wei, Wenhui ; Srinivas, Swaminath ; Lin, Jingxia ; Tang, Zichen ; Wang, Shihua ; Ullah, Saif ; Kota, Vishnu Goutham ; Feng, Youjun</creator><contributor>Hughes, Diarmaid</contributor><creatorcontrib>Wei, Wenhui ; Srinivas, Swaminath ; Lin, Jingxia ; Tang, Zichen ; Wang, Shihua ; Ullah, Saif ; Kota, Vishnu Goutham ; Feng, Youjun ; Hughes, Diarmaid</creatorcontrib><description>Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007389</identifier><identifier>PMID: 29758020</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amino acids ; Anti-Bacterial Agents - pharmacology ; Antibiotic resistance ; Antibiotics ; Bacterial Proteins - classification ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Bioinformatics ; Biology and Life Sciences ; Catalysis ; Colistin ; Colistin - pharmacology ; Dosage and administration ; Drug resistance ; Drug Resistance, Bacterial - genetics ; E coli ; Enzymes ; Escherichia coli ; Ethanolamines - metabolism ; Evolutionary genetics ; Gene mapping ; Genes ; Life sciences ; Lipid A ; Lipopolysaccharides ; Mass spectroscopy ; Medicine ; Medicine and Health Sciences ; Membrane Proteins - classification ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Microbial drug resistance ; Molecular Docking Simulation ; Moraxella ; Moraxella - drug effects ; Moraxella - enzymology ; Moraxella - genetics ; Observations ; Parasitology ; Phosphatidylethanolamine ; Phosphatidylethanolamines - metabolism ; Phylogeny ; Physical Sciences ; Physiology ; Protein Binding ; Proteins ; Reactive oxygen species ; Research and Analysis Methods ; Software ; Substrate Specificity</subject><ispartof>PLoS genetics, 2018-05, Vol.14 (5), p.e1007389-e1007389</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Wei et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Wei et al 2018 Wei et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-69bab436fe43f8532ea2b95251b36455564e1d156e183ce9a985fa99dc80baea3</citedby><cites>FETCH-LOGICAL-c726t-69bab436fe43f8532ea2b95251b36455564e1d156e183ce9a985fa99dc80baea3</cites><orcidid>0000-0001-8083-0175</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983563/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983563/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29758020$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hughes, Diarmaid</contributor><creatorcontrib>Wei, Wenhui</creatorcontrib><creatorcontrib>Srinivas, Swaminath</creatorcontrib><creatorcontrib>Lin, Jingxia</creatorcontrib><creatorcontrib>Tang, Zichen</creatorcontrib><creatorcontrib>Wang, Shihua</creatorcontrib><creatorcontrib>Ullah, Saif</creatorcontrib><creatorcontrib>Kota, Vishnu Goutham</creatorcontrib><creatorcontrib>Feng, Youjun</creatorcontrib><title>Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.</description><subject>Amino acids</subject><subject>Anti-Bacterial Agents - pharmacology</subject><subject>Antibiotic resistance</subject><subject>Antibiotics</subject><subject>Bacterial Proteins - classification</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Bioinformatics</subject><subject>Biology and Life Sciences</subject><subject>Catalysis</subject><subject>Colistin</subject><subject>Colistin - pharmacology</subject><subject>Dosage and administration</subject><subject>Drug resistance</subject><subject>Drug Resistance, Bacterial - genetics</subject><subject>E coli</subject><subject>Enzymes</subject><subject>Escherichia coli</subject><subject>Ethanolamines - metabolism</subject><subject>Evolutionary genetics</subject><subject>Gene mapping</subject><subject>Genes</subject><subject>Life sciences</subject><subject>Lipid A</subject><subject>Lipopolysaccharides</subject><subject>Mass spectroscopy</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Membrane Proteins - classification</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Microbial drug resistance</subject><subject>Molecular Docking Simulation</subject><subject>Moraxella</subject><subject>Moraxella - drug effects</subject><subject>Moraxella - enzymology</subject><subject>Moraxella - genetics</subject><subject>Observations</subject><subject>Parasitology</subject><subject>Phosphatidylethanolamine</subject><subject>Phosphatidylethanolamines - metabolism</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Reactive oxygen species</subject><subject>Research and Analysis Methods</subject><subject>Software</subject><subject>Substrate Specificity</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVk11rFDEUhgdRbK3-A9EBQRTcNZl8THIjlPVrobVQtbchkzmzm2UmWZMZqf_erDstO9ILJRcJyfO-yTknJ8ueYjTHpMRvN34ITrfz7QrcHCNUEiHvZceYMTIrKaL3D9ZH2aMYNwgRJmT5MDsqZMkEKtBxdvUeGuusW-XLxeXs3L_Jtcut64N10Zrc-NbG3ro8QEwL7QzkNfQQOuu06_Mm-C4_90FfQ9vq3MfWQxLGx9mDRrcRnozzSfb944dvi8-zs4tPy8Xp2cyUBe9nXFa6ooQ3QEkjGClAF5VkBcMV4ZQxxingGjMOWBADUkvBGi1lbQSqNGhykj3f-25bH9WYkqgKRKUskRA0Ecs9UXu9UdtgOx1-Ka-t-rPhw0rp0FvTgqqxaApUc1HWNa1qU1W8pLopBPDCVLJMXu_G24aqg9pAypNuJ6bTE2fXauV_KiYFYZwkg1ejQfA_Boi96mw0u9Q58MPu3UQWQmKOEvriL_Tu6EZqpVMA1jU-3Wt2puqUUYw4FUwman4HlUYNnTXepS-Q9ieC1xNBYnq47ld6iFEtv17-B_vl39mLqyn78oBdg277dfTt0Fvv4hSke9AEH2OA5rYgGKldq9xkTu1aRY2tkmTPDot5K7rpDfIb2UsNyg</recordid><startdate>20180514</startdate><enddate>20180514</enddate><creator>Wei, Wenhui</creator><creator>Srinivas, Swaminath</creator><creator>Lin, Jingxia</creator><creator>Tang, Zichen</creator><creator>Wang, Shihua</creator><creator>Ullah, Saif</creator><creator>Kota, Vishnu Goutham</creator><creator>Feng, Youjun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8083-0175</orcidid></search><sort><creationdate>20180514</creationdate><title>Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis</title><author>Wei, Wenhui ; Srinivas, Swaminath ; Lin, Jingxia ; Tang, Zichen ; Wang, Shihua ; Ullah, Saif ; Kota, Vishnu Goutham ; Feng, Youjun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-69bab436fe43f8532ea2b95251b36455564e1d156e183ce9a985fa99dc80baea3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amino acids</topic><topic>Anti-Bacterial Agents - pharmacology</topic><topic>Antibiotic resistance</topic><topic>Antibiotics</topic><topic>Bacterial Proteins - classification</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Bioinformatics</topic><topic>Biology and Life Sciences</topic><topic>Catalysis</topic><topic>Colistin</topic><topic>Colistin - pharmacology</topic><topic>Dosage and administration</topic><topic>Drug resistance</topic><topic>Drug Resistance, Bacterial - genetics</topic><topic>E coli</topic><topic>Enzymes</topic><topic>Escherichia coli</topic><topic>Ethanolamines - metabolism</topic><topic>Evolutionary genetics</topic><topic>Gene mapping</topic><topic>Genes</topic><topic>Life sciences</topic><topic>Lipid A</topic><topic>Lipopolysaccharides</topic><topic>Mass spectroscopy</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Membrane Proteins - classification</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Microbial drug resistance</topic><topic>Molecular Docking Simulation</topic><topic>Moraxella</topic><topic>Moraxella - drug effects</topic><topic>Moraxella - enzymology</topic><topic>Moraxella - genetics</topic><topic>Observations</topic><topic>Parasitology</topic><topic>Phosphatidylethanolamine</topic><topic>Phosphatidylethanolamines - metabolism</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Reactive oxygen species</topic><topic>Research and Analysis Methods</topic><topic>Software</topic><topic>Substrate Specificity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wei, Wenhui</creatorcontrib><creatorcontrib>Srinivas, Swaminath</creatorcontrib><creatorcontrib>Lin, Jingxia</creatorcontrib><creatorcontrib>Tang, Zichen</creatorcontrib><creatorcontrib>Wang, Shihua</creatorcontrib><creatorcontrib>Ullah, Saif</creatorcontrib><creatorcontrib>Kota, Vishnu Goutham</creatorcontrib><creatorcontrib>Feng, Youjun</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wei, Wenhui</au><au>Srinivas, Swaminath</au><au>Lin, Jingxia</au><au>Tang, Zichen</au><au>Wang, Shihua</au><au>Ullah, Saif</au><au>Kota, Vishnu Goutham</au><au>Feng, Youjun</au><au>Hughes, Diarmaid</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-05-14</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>e1007389</spage><epage>e1007389</epage><pages>e1007389-e1007389</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>Polymyxin is the last line of defense against severe infections caused by carbapenem-resistant gram-negative pathogens. The emergence of transferable MCR-1/2 polymyxin resistance greatly challenges the renewed interest in colistin (polymyxin E) for clinical treatments. Recent studies have suggested that Moraxella species are a putative reservoir for MCR-1/2 genetic determinants. Here, we report the functional definition of ICR-Mo from M. osloensis, a chromosomally encoded determinant of colistin resistance, in close relation to current MCR-1/2 family. ICR-Mo transmembrane protein was prepared and purified to homogeneity. Taken along with an in vitro enzymatic detection, MALDI-TOF mass spectrometry of bacterial lipid A pools determined that the ICR-Mo enzyme might exploit a possible "ping-pong" mechanism to accept the phosphoethanolamine (PEA) moiety from its donor phosphatidylethanolamine (PE) and then transfer it to the 1(or 4')-phosphate position of lipid A via an ICR-Mo-bound PEA adduct. Structural decoration of LPS-lipid A by ICR-Mo renders the recipient strain of E. coli resistant to polymyxin. Domain swapping assays indicate that the two domains of ICR-Mo cannot be functionally-exchanged with its counterparts in MCR-1/2 and EptA, validating its phylogenetic position in a distinct set of MCR-like genes. Structure-guided functional mapping of ICR-Mo reveals a PE lipid substrate recognizing cavity having a role in enzymatic catalysis and the resultant conference of antibiotic resistance. Expression of icr-Mo in E. coli significantly prevents the formation of reactive oxygen species (ROS) induced by colistin. Taken together, our results define a member of a group of intrinsic colistin resistance genes phylogenetically close to the MCR-1/2 family, highlighting the evolution of transferable colistin resistance.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29758020</pmid><doi>10.1371/journal.pgen.1007389</doi><orcidid>https://orcid.org/0000-0001-8083-0175</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2018-05, Vol.14 (5), p.e1007389-e1007389 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2049970884 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Amino acids Anti-Bacterial Agents - pharmacology Antibiotic resistance Antibiotics Bacterial Proteins - classification Bacterial Proteins - genetics Bacterial Proteins - metabolism Bioinformatics Biology and Life Sciences Catalysis Colistin Colistin - pharmacology Dosage and administration Drug resistance Drug Resistance, Bacterial - genetics E coli Enzymes Escherichia coli Ethanolamines - metabolism Evolutionary genetics Gene mapping Genes Life sciences Lipid A Lipopolysaccharides Mass spectroscopy Medicine Medicine and Health Sciences Membrane Proteins - classification Membrane Proteins - genetics Membrane Proteins - metabolism Microbial drug resistance Molecular Docking Simulation Moraxella Moraxella - drug effects Moraxella - enzymology Moraxella - genetics Observations Parasitology Phosphatidylethanolamine Phosphatidylethanolamines - metabolism Phylogeny Physical Sciences Physiology Protein Binding Proteins Reactive oxygen species Research and Analysis Methods Software Substrate Specificity |
title | Defining ICR-Mo, an intrinsic colistin resistance determinant from Moraxella osloensis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T02%3A18%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Defining%20ICR-Mo,%20an%20intrinsic%20colistin%20resistance%20determinant%20from%20Moraxella%20osloensis&rft.jtitle=PLoS%20genetics&rft.au=Wei,%20Wenhui&rft.date=2018-05-14&rft.volume=14&rft.issue=5&rft.spage=e1007389&rft.epage=e1007389&rft.pages=e1007389-e1007389&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007389&rft_dat=%3Cgale_plos_%3EA541064859%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049970884&rft_id=info:pmid/29758020&rft_galeid=A541064859&rft_doaj_id=oai_doaj_org_article_d18f20d687dd4bdcbb674af28e62cb97&rfr_iscdi=true |