Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein
RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is...
Gespeichert in:
Veröffentlicht in: | PLoS pathogens 2018-05, Vol.14 (5), p.e1007086-e1007086 |
---|---|
Hauptverfasser: | , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007086 |
---|---|
container_issue | 5 |
container_start_page | e1007086 |
container_title | PLoS pathogens |
container_volume | 14 |
creator | Banerjee, Sravani Aponte-Diaz, David Yeager, Calvin Sharma, Suresh D Ning, Gang Oh, Hyung S Han, Qingxia Umeda, Masato Hara, Yuji Wang, Robert Y L Cameron, Craig E |
description | RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways. |
doi_str_mv | 10.1371/journal.ppat.1007086 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2049930222</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541064746</galeid><doaj_id>oai_doaj_org_article_d826e3926a544566908325be947a5945</doaj_id><sourcerecordid>A541064746</sourcerecordid><originalsourceid>FETCH-LOGICAL-c771t-e1fb079608a6c60637f0cff5ab35bfa1aa2f31378c9259ffcd078a4e881db4eb3</originalsourceid><addsrcrecordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGfx2skGqhkdHqkDisbYcx854SOw0Tgoj_jyembRqUDcoihLZ3znX5_pm2XMEl4gI9HYbxt6rZtl1algiCAXM-YPsFDFGFoII-vDO_0n2JMYthBQRxB9nJ7gQOWaMnmZ_LtxW6Z_O1yBY0I7N4LrGgG4TYnob17kKlC7EnR82ZnAapGqbX2oXgfIVcL4a9eCCP4hNW_bKmz1fG2-ii6DcAQU6p0M66rXrVQPI6j3o-jAY559mj6xqonk2fc-yHx8_fF9dLC6_fFqvzi8XWgg0LAyyJRQFh7nimkNOhIXaWqZKwkqrkFLYktSSXBeYFdbqCopcUZPnqCqpKclZ9vLo2zUhyqlvUWJIi4JAjHEi1keiCmoru961qt_JoJw8LIS-lqpP6RsjqxxzQwrMFaOUcV7AnGBWmoIKxQrKkte7qdpYtqbSxg8p98x0vuPdRtbhWrIiJ7lAyeD1ZNCHq9HEQbYuatM0qbdhPJwbCwYFFwl99Q96f7qJqlUK4LwNqa7em8pzRhHkVFCeqOU9VHoq06YL9Ma6tD4TvJkJEjOY30Otxhjl-tvX_2A_z1l6ZHUfYuyNve0dgnI_-jch5X705TT6Sfbibt9vRTezTv4CDM4Alw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049930222</pqid></control><display><type>article</type><title>Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central Open Access</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Banerjee, Sravani ; Aponte-Diaz, David ; Yeager, Calvin ; Sharma, Suresh D ; Ning, Gang ; Oh, Hyung S ; Han, Qingxia ; Umeda, Masato ; Hara, Yuji ; Wang, Robert Y L ; Cameron, Craig E</creator><contributor>Randall, Glenn</contributor><creatorcontrib>Banerjee, Sravani ; Aponte-Diaz, David ; Yeager, Calvin ; Sharma, Suresh D ; Ning, Gang ; Oh, Hyung S ; Han, Qingxia ; Umeda, Masato ; Hara, Yuji ; Wang, Robert Y L ; Cameron, Craig E ; Randall, Glenn</creatorcontrib><description>RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways.</description><identifier>ISSN: 1553-7374</identifier><identifier>ISSN: 1553-7366</identifier><identifier>EISSN: 1553-7374</identifier><identifier>DOI: 10.1371/journal.ppat.1007086</identifier><identifier>PMID: 29782554</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adenosine diphosphate ; ADP-ribosylation factor ; ADP-Ribosylation Factor 1 - metabolism ; Analysis ; Biochemistry ; Biology and Life Sciences ; Brefeldin A ; Brefeldin A - pharmacology ; Cell Membrane - ultrastructure ; Dactinomycin - pharmacology ; Derivatives ; Engineering schools ; Foot & mouth disease ; Genetic aspects ; Genomes ; Golgi apparatus ; Golgi Apparatus - drug effects ; Golgi Apparatus - metabolism ; Guanine ; Guanine nucleotide exchange factor ; Guanine Nucleotide Exchange Factors - metabolism ; HeLa Cells ; Hepatitis ; Humans ; Infections ; Kinases ; Lecithin ; Lipid composition ; Membrane lipids ; Membranes ; Microscopy, Electron, Transmission ; Molecular biology ; Organelle Biogenesis ; Organelles ; Peptide Hydrolases - metabolism ; Phosphatidylcholine ; Phosphatidylinositol 4,5-diphosphate ; Phosphatidylinositol Phosphates - metabolism ; Phospholipids ; Phospholipids - biosynthesis ; Picornaviridae - enzymology ; Picornaviruses ; Poliovirus - enzymology ; Protein Synthesis Inhibitors - pharmacology ; Proteins ; Pyridines - pharmacology ; Quinolines - pharmacology ; Replication ; Research and analysis methods ; Resistance factors ; Ribonucleic acid ; RNA ; RNA polymerase ; RNA viruses ; Synthesis ; Viral infections ; Viral proteins ; Viral Proteins - metabolism ; Virology ; Viruses ; West Nile virus</subject><ispartof>PLoS pathogens, 2018-05, Vol.14 (5), p.e1007086-e1007086</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Banerjee et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Banerjee et al 2018 Banerjee et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c771t-e1fb079608a6c60637f0cff5ab35bfa1aa2f31378c9259ffcd078a4e881db4eb3</citedby><cites>FETCH-LOGICAL-c771t-e1fb079608a6c60637f0cff5ab35bfa1aa2f31378c9259ffcd078a4e881db4eb3</cites><orcidid>0000-0002-6023-2036 ; 0000-0002-7564-5642 ; 0000-0001-6586-3243 ; 0000-0002-4364-6755 ; 0000-0002-8633-4145</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983871/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5983871/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29782554$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Randall, Glenn</contributor><creatorcontrib>Banerjee, Sravani</creatorcontrib><creatorcontrib>Aponte-Diaz, David</creatorcontrib><creatorcontrib>Yeager, Calvin</creatorcontrib><creatorcontrib>Sharma, Suresh D</creatorcontrib><creatorcontrib>Ning, Gang</creatorcontrib><creatorcontrib>Oh, Hyung S</creatorcontrib><creatorcontrib>Han, Qingxia</creatorcontrib><creatorcontrib>Umeda, Masato</creatorcontrib><creatorcontrib>Hara, Yuji</creatorcontrib><creatorcontrib>Wang, Robert Y L</creatorcontrib><creatorcontrib>Cameron, Craig E</creatorcontrib><title>Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein</title><title>PLoS pathogens</title><addtitle>PLoS Pathog</addtitle><description>RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways.</description><subject>Adenosine diphosphate</subject><subject>ADP-ribosylation factor</subject><subject>ADP-Ribosylation Factor 1 - metabolism</subject><subject>Analysis</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Brefeldin A</subject><subject>Brefeldin A - pharmacology</subject><subject>Cell Membrane - ultrastructure</subject><subject>Dactinomycin - pharmacology</subject><subject>Derivatives</subject><subject>Engineering schools</subject><subject>Foot & mouth disease</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Golgi apparatus</subject><subject>Golgi Apparatus - drug effects</subject><subject>Golgi Apparatus - metabolism</subject><subject>Guanine</subject><subject>Guanine nucleotide exchange factor</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>HeLa Cells</subject><subject>Hepatitis</subject><subject>Humans</subject><subject>Infections</subject><subject>Kinases</subject><subject>Lecithin</subject><subject>Lipid composition</subject><subject>Membrane lipids</subject><subject>Membranes</subject><subject>Microscopy, Electron, Transmission</subject><subject>Molecular biology</subject><subject>Organelle Biogenesis</subject><subject>Organelles</subject><subject>Peptide Hydrolases - metabolism</subject><subject>Phosphatidylcholine</subject><subject>Phosphatidylinositol 4,5-diphosphate</subject><subject>Phosphatidylinositol Phosphates - metabolism</subject><subject>Phospholipids</subject><subject>Phospholipids - biosynthesis</subject><subject>Picornaviridae - enzymology</subject><subject>Picornaviruses</subject><subject>Poliovirus - enzymology</subject><subject>Protein Synthesis Inhibitors - pharmacology</subject><subject>Proteins</subject><subject>Pyridines - pharmacology</subject><subject>Quinolines - pharmacology</subject><subject>Replication</subject><subject>Research and analysis methods</subject><subject>Resistance factors</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA polymerase</subject><subject>RNA viruses</subject><subject>Synthesis</subject><subject>Viral infections</subject><subject>Viral proteins</subject><subject>Viral Proteins - metabolism</subject><subject>Virology</subject><subject>Viruses</subject><subject>West Nile virus</subject><issn>1553-7374</issn><issn>1553-7366</issn><issn>1553-7374</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAUhSMEoqXwDxBYYgOLGfx2skGqhkdHqkDisbYcx854SOw0Tgoj_jyembRqUDcoihLZ3znX5_pm2XMEl4gI9HYbxt6rZtl1algiCAXM-YPsFDFGFoII-vDO_0n2JMYthBQRxB9nJ7gQOWaMnmZ_LtxW6Z_O1yBY0I7N4LrGgG4TYnob17kKlC7EnR82ZnAapGqbX2oXgfIVcL4a9eCCP4hNW_bKmz1fG2-ii6DcAQU6p0M66rXrVQPI6j3o-jAY559mj6xqonk2fc-yHx8_fF9dLC6_fFqvzi8XWgg0LAyyJRQFh7nimkNOhIXaWqZKwkqrkFLYktSSXBeYFdbqCopcUZPnqCqpKclZ9vLo2zUhyqlvUWJIi4JAjHEi1keiCmoru961qt_JoJw8LIS-lqpP6RsjqxxzQwrMFaOUcV7AnGBWmoIKxQrKkte7qdpYtqbSxg8p98x0vuPdRtbhWrIiJ7lAyeD1ZNCHq9HEQbYuatM0qbdhPJwbCwYFFwl99Q96f7qJqlUK4LwNqa7em8pzRhHkVFCeqOU9VHoq06YL9Ma6tD4TvJkJEjOY30Otxhjl-tvX_2A_z1l6ZHUfYuyNve0dgnI_-jch5X705TT6Sfbibt9vRTezTv4CDM4Alw</recordid><startdate>20180521</startdate><enddate>20180521</enddate><creator>Banerjee, Sravani</creator><creator>Aponte-Diaz, David</creator><creator>Yeager, Calvin</creator><creator>Sharma, Suresh D</creator><creator>Ning, Gang</creator><creator>Oh, Hyung S</creator><creator>Han, Qingxia</creator><creator>Umeda, Masato</creator><creator>Hara, Yuji</creator><creator>Wang, Robert Y L</creator><creator>Cameron, Craig E</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6023-2036</orcidid><orcidid>https://orcid.org/0000-0002-7564-5642</orcidid><orcidid>https://orcid.org/0000-0001-6586-3243</orcidid><orcidid>https://orcid.org/0000-0002-4364-6755</orcidid><orcidid>https://orcid.org/0000-0002-8633-4145</orcidid></search><sort><creationdate>20180521</creationdate><title>Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein</title><author>Banerjee, Sravani ; Aponte-Diaz, David ; Yeager, Calvin ; Sharma, Suresh D ; Ning, Gang ; Oh, Hyung S ; Han, Qingxia ; Umeda, Masato ; Hara, Yuji ; Wang, Robert Y L ; Cameron, Craig E</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c771t-e1fb079608a6c60637f0cff5ab35bfa1aa2f31378c9259ffcd078a4e881db4eb3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adenosine diphosphate</topic><topic>ADP-ribosylation factor</topic><topic>ADP-Ribosylation Factor 1 - metabolism</topic><topic>Analysis</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Brefeldin A</topic><topic>Brefeldin A - pharmacology</topic><topic>Cell Membrane - ultrastructure</topic><topic>Dactinomycin - pharmacology</topic><topic>Derivatives</topic><topic>Engineering schools</topic><topic>Foot & mouth disease</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Golgi apparatus</topic><topic>Golgi Apparatus - drug effects</topic><topic>Golgi Apparatus - metabolism</topic><topic>Guanine</topic><topic>Guanine nucleotide exchange factor</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>HeLa Cells</topic><topic>Hepatitis</topic><topic>Humans</topic><topic>Infections</topic><topic>Kinases</topic><topic>Lecithin</topic><topic>Lipid composition</topic><topic>Membrane lipids</topic><topic>Membranes</topic><topic>Microscopy, Electron, Transmission</topic><topic>Molecular biology</topic><topic>Organelle Biogenesis</topic><topic>Organelles</topic><topic>Peptide Hydrolases - metabolism</topic><topic>Phosphatidylcholine</topic><topic>Phosphatidylinositol 4,5-diphosphate</topic><topic>Phosphatidylinositol Phosphates - metabolism</topic><topic>Phospholipids</topic><topic>Phospholipids - biosynthesis</topic><topic>Picornaviridae - enzymology</topic><topic>Picornaviruses</topic><topic>Poliovirus - enzymology</topic><topic>Protein Synthesis Inhibitors - pharmacology</topic><topic>Proteins</topic><topic>Pyridines - pharmacology</topic><topic>Quinolines - pharmacology</topic><topic>Replication</topic><topic>Research and analysis methods</topic><topic>Resistance factors</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA polymerase</topic><topic>RNA viruses</topic><topic>Synthesis</topic><topic>Viral infections</topic><topic>Viral proteins</topic><topic>Viral Proteins - metabolism</topic><topic>Virology</topic><topic>Viruses</topic><topic>West Nile virus</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Banerjee, Sravani</creatorcontrib><creatorcontrib>Aponte-Diaz, David</creatorcontrib><creatorcontrib>Yeager, Calvin</creatorcontrib><creatorcontrib>Sharma, Suresh D</creatorcontrib><creatorcontrib>Ning, Gang</creatorcontrib><creatorcontrib>Oh, Hyung S</creatorcontrib><creatorcontrib>Han, Qingxia</creatorcontrib><creatorcontrib>Umeda, Masato</creatorcontrib><creatorcontrib>Hara, Yuji</creatorcontrib><creatorcontrib>Wang, Robert Y L</creatorcontrib><creatorcontrib>Cameron, Craig E</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS pathogens</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Banerjee, Sravani</au><au>Aponte-Diaz, David</au><au>Yeager, Calvin</au><au>Sharma, Suresh D</au><au>Ning, Gang</au><au>Oh, Hyung S</au><au>Han, Qingxia</au><au>Umeda, Masato</au><au>Hara, Yuji</au><au>Wang, Robert Y L</au><au>Cameron, Craig E</au><au>Randall, Glenn</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein</atitle><jtitle>PLoS pathogens</jtitle><addtitle>PLoS Pathog</addtitle><date>2018-05-21</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>e1007086</spage><epage>e1007086</epage><pages>e1007086-e1007086</pages><issn>1553-7374</issn><issn>1553-7366</issn><eissn>1553-7374</eissn><abstract>RNA viruses induce specialized membranous structures for use in genome replication. These structures are often referred to as replication organelles (ROs). ROs exhibit distinct lipid composition relative to other cellular membranes. In many picornaviruses, phosphatidylinositol-4-phosphate (PI4P) is a marker of the RO. Studies to date indicate that the viral 3A protein hijacks a PI4 kinase to induce PI4P by a mechanism unrelated to the cellular pathway, which requires Golgi-specific brefeldin A-resistance guanine nucleotide exchange factor 1, GBF1, and ADP ribosylation factor 1, Arf1. Here we show that a picornaviral 3CD protein is sufficient to induce synthesis of not only PI4P but also phosphatidylinositol-4,5-bisphosphate (PIP2) and phosphatidylcholine (PC). Synthesis of PI4P requires GBF1 and Arf1. We identified 3CD derivatives: 3CDm and 3CmD, that we used to show that distinct domains of 3CD function upstream of GBF1 and downstream of Arf1 activation. These same 3CD derivatives still supported induction of PIP2 and PC, suggesting that pathways and corresponding mechanisms used to induce these phospholipids are distinct. Phospholipid induction by 3CD is localized to the perinuclear region of the cell, the outcome of which is the proliferation of membranes in this area of the cell. We conclude that a single viral protein can serve as a master regulator of cellular phospholipid and membrane biogenesis, likely by commandeering normal cellular pathways.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29782554</pmid><doi>10.1371/journal.ppat.1007086</doi><orcidid>https://orcid.org/0000-0002-6023-2036</orcidid><orcidid>https://orcid.org/0000-0002-7564-5642</orcidid><orcidid>https://orcid.org/0000-0001-6586-3243</orcidid><orcidid>https://orcid.org/0000-0002-4364-6755</orcidid><orcidid>https://orcid.org/0000-0002-8633-4145</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7374 |
ispartof | PLoS pathogens, 2018-05, Vol.14 (5), p.e1007086-e1007086 |
issn | 1553-7374 1553-7366 1553-7374 |
language | eng |
recordid | cdi_plos_journals_2049930222 |
source | MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central Open Access; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Adenosine diphosphate ADP-ribosylation factor ADP-Ribosylation Factor 1 - metabolism Analysis Biochemistry Biology and Life Sciences Brefeldin A Brefeldin A - pharmacology Cell Membrane - ultrastructure Dactinomycin - pharmacology Derivatives Engineering schools Foot & mouth disease Genetic aspects Genomes Golgi apparatus Golgi Apparatus - drug effects Golgi Apparatus - metabolism Guanine Guanine nucleotide exchange factor Guanine Nucleotide Exchange Factors - metabolism HeLa Cells Hepatitis Humans Infections Kinases Lecithin Lipid composition Membrane lipids Membranes Microscopy, Electron, Transmission Molecular biology Organelle Biogenesis Organelles Peptide Hydrolases - metabolism Phosphatidylcholine Phosphatidylinositol 4,5-diphosphate Phosphatidylinositol Phosphates - metabolism Phospholipids Phospholipids - biosynthesis Picornaviridae - enzymology Picornaviruses Poliovirus - enzymology Protein Synthesis Inhibitors - pharmacology Proteins Pyridines - pharmacology Quinolines - pharmacology Replication Research and analysis methods Resistance factors Ribonucleic acid RNA RNA polymerase RNA viruses Synthesis Viral infections Viral proteins Viral Proteins - metabolism Virology Viruses West Nile virus |
title | Hijacking of multiple phospholipid biosynthetic pathways and induction of membrane biogenesis by a picornaviral 3CD protein |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T05%3A46%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hijacking%20of%20multiple%20phospholipid%20biosynthetic%20pathways%20and%20induction%20of%20membrane%20biogenesis%20by%20a%20picornaviral%203CD%20protein&rft.jtitle=PLoS%20pathogens&rft.au=Banerjee,%20Sravani&rft.date=2018-05-21&rft.volume=14&rft.issue=5&rft.spage=e1007086&rft.epage=e1007086&rft.pages=e1007086-e1007086&rft.issn=1553-7374&rft.eissn=1553-7374&rft_id=info:doi/10.1371/journal.ppat.1007086&rft_dat=%3Cgale_plos_%3EA541064746%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049930222&rft_id=info:pmid/29782554&rft_galeid=A541064746&rft_doaj_id=oai_doaj_org_article_d826e3926a544566908325be947a5945&rfr_iscdi=true |