Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons

Visual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be selectively modulated by particular visual stimulus parameters, such as the direction of a moving bar of light, resulting in well-defined trial averaged tuning properties. However, given any single stimul...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-05, Vol.14 (5), p.e1006153-e1006153
Hauptverfasser: Dechery, Joseph B, MacLean, Jason N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1006153
container_issue 5
container_start_page e1006153
container_title PLoS computational biology
container_volume 14
creator Dechery, Joseph B
MacLean, Jason N
description Visual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be selectively modulated by particular visual stimulus parameters, such as the direction of a moving bar of light, resulting in well-defined trial averaged tuning properties. However, given any single stimulus parameter, a large number of neurons in visual cortex remain unmodulated, and the role of this untuned population is not well understood. Here, we use two-photon calcium imaging to record, in an unbiased manner, from large populations of layer 2/3 excitatory neurons in mouse primary visual cortex to describe co-varying activity on single trials in neuronal populations consisting of both tuned and untuned neurons. Specifically, we summarize pairwise covariability with an asymmetric partial correlation coefficient, allowing us to analyze the resultant population correlation structure, or functional network, with graph theory. Using the graph neighbors of a neuron, we find that the local population, including both tuned and untuned neurons, are able to predict individual neuron activity on a moment to moment basis, while also recapitulating tuning properties of tuned neurons. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. We also find that a specific functional triplet motif in the graph results in the best predictions, suggesting a signature of informative correlations in these populations. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. In summary, we show that unbiased sampling of the local population can explain single trial response variability as well as trial-averaged tuning properties in V1, and the ability to predict responses is tied to the occurrence of a functional triplet motif.
doi_str_mv 10.1371/journal.pcbi.1006153
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2049928637</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A541064928</galeid><doaj_id>oai_doaj_org_article_d9f358daf96743de9bdee4f7579fa8a7</doaj_id><sourcerecordid>A541064928</sourcerecordid><originalsourceid>FETCH-LOGICAL-c633t-5b2c039fc75659334fe3388323470e36eb1d37be3d6242eca4f418590d6911953</originalsourceid><addsrcrecordid>eNqVkk2LFDEQhhtR3HX1H4g2eNFDj0kn6XQuwrK4OrAo-HUN6aQyZuhJepO06M2fbmZndtgRL5JDisrzvlUpqqqeYrTAhOPX6zBHr8bFpAe3wAh1mJF71SlmjDScsP7-nfikepTSGqESiu5hddIK3nJK-9Pq9-XsdXahONU5ummEXG9CdjbVszcQRwe10nqOKkM9RTDuhk51sHVyfjVCU2RFHCFNJQ-pdr6ewjSP6gDm2YOplTfFcxd_w7WHOZb3x9UDq8YET_b3WfX18u2Xi_fN1cd3y4vzq0Z3hOSGDa1GRFjNWccEIdQCIX1PWkI5AtLBgA3hAxDTtbQFrailuGcCmU5gLBg5q57vfKcxJLkfXpItokK0fUd4IZY7wgS1llN0GxV_yaCcvEmEuJIqZqdHkEbYMkqjrOg4JQbEYACo5YwLq3q19XqzrzYPGzAafI5qPDI9fvHuu1yFH5IJxliPi8HLvUEM1zOkLDcuaRhH5SHM274JayljGBX0xV_ov3-32FErVT7gvA2lri7HwMbp4MG6kj9nFKOOFk0RvDoSFCbDz7xSc0py-fnTf7Afjlm6Y3UMKUWwh6lgJLebfdu-3G623G92kT27O9GD6HaVyR_Cxfc7</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2049928637</pqid></control><display><type>article</type><title>Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Dechery, Joseph B ; MacLean, Jason N</creator><creatorcontrib>Dechery, Joseph B ; MacLean, Jason N</creatorcontrib><description>Visual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be selectively modulated by particular visual stimulus parameters, such as the direction of a moving bar of light, resulting in well-defined trial averaged tuning properties. However, given any single stimulus parameter, a large number of neurons in visual cortex remain unmodulated, and the role of this untuned population is not well understood. Here, we use two-photon calcium imaging to record, in an unbiased manner, from large populations of layer 2/3 excitatory neurons in mouse primary visual cortex to describe co-varying activity on single trials in neuronal populations consisting of both tuned and untuned neurons. Specifically, we summarize pairwise covariability with an asymmetric partial correlation coefficient, allowing us to analyze the resultant population correlation structure, or functional network, with graph theory. Using the graph neighbors of a neuron, we find that the local population, including both tuned and untuned neurons, are able to predict individual neuron activity on a moment to moment basis, while also recapitulating tuning properties of tuned neurons. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. We also find that a specific functional triplet motif in the graph results in the best predictions, suggesting a signature of informative correlations in these populations. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. In summary, we show that unbiased sampling of the local population can explain single trial response variability as well as trial-averaged tuning properties in V1, and the ability to predict responses is tied to the occurrence of a functional triplet motif.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006153</identifier><identifier>PMID: 29727448</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and Life Sciences ; Calcium ; Calcium imaging ; Computer and Information Sciences ; Correlation analysis ; Correlation coefficient ; Correlation coefficients ; Graph theory ; Local population ; Neural circuitry ; Neuroimaging ; Neurons ; Neurosciences ; Parameters ; Physical Sciences ; Physiological aspects ; Population ; Populations ; Properties (attributes) ; Research and Analysis Methods ; Social Sciences ; Tuning ; Visual cortex ; Visual stimuli</subject><ispartof>PLoS computational biology, 2018-05, Vol.14 (5), p.e1006153-e1006153</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Dechery, MacLean. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Dechery, MacLean 2018 Dechery, MacLean</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c633t-5b2c039fc75659334fe3388323470e36eb1d37be3d6242eca4f418590d6911953</citedby><cites>FETCH-LOGICAL-c633t-5b2c039fc75659334fe3388323470e36eb1d37be3d6242eca4f418590d6911953</cites><orcidid>0000-0002-8021-8063</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955581/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955581/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29727448$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dechery, Joseph B</creatorcontrib><creatorcontrib>MacLean, Jason N</creatorcontrib><title>Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Visual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be selectively modulated by particular visual stimulus parameters, such as the direction of a moving bar of light, resulting in well-defined trial averaged tuning properties. However, given any single stimulus parameter, a large number of neurons in visual cortex remain unmodulated, and the role of this untuned population is not well understood. Here, we use two-photon calcium imaging to record, in an unbiased manner, from large populations of layer 2/3 excitatory neurons in mouse primary visual cortex to describe co-varying activity on single trials in neuronal populations consisting of both tuned and untuned neurons. Specifically, we summarize pairwise covariability with an asymmetric partial correlation coefficient, allowing us to analyze the resultant population correlation structure, or functional network, with graph theory. Using the graph neighbors of a neuron, we find that the local population, including both tuned and untuned neurons, are able to predict individual neuron activity on a moment to moment basis, while also recapitulating tuning properties of tuned neurons. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. We also find that a specific functional triplet motif in the graph results in the best predictions, suggesting a signature of informative correlations in these populations. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. In summary, we show that unbiased sampling of the local population can explain single trial response variability as well as trial-averaged tuning properties in V1, and the ability to predict responses is tied to the occurrence of a functional triplet motif.</description><subject>Biology and Life Sciences</subject><subject>Calcium</subject><subject>Calcium imaging</subject><subject>Computer and Information Sciences</subject><subject>Correlation analysis</subject><subject>Correlation coefficient</subject><subject>Correlation coefficients</subject><subject>Graph theory</subject><subject>Local population</subject><subject>Neural circuitry</subject><subject>Neuroimaging</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Parameters</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Population</subject><subject>Populations</subject><subject>Properties (attributes)</subject><subject>Research and Analysis Methods</subject><subject>Social Sciences</subject><subject>Tuning</subject><subject>Visual cortex</subject><subject>Visual stimuli</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkk2LFDEQhhtR3HX1H4g2eNFDj0kn6XQuwrK4OrAo-HUN6aQyZuhJepO06M2fbmZndtgRL5JDisrzvlUpqqqeYrTAhOPX6zBHr8bFpAe3wAh1mJF71SlmjDScsP7-nfikepTSGqESiu5hddIK3nJK-9Pq9-XsdXahONU5ummEXG9CdjbVszcQRwe10nqOKkM9RTDuhk51sHVyfjVCU2RFHCFNJQ-pdr6ewjSP6gDm2YOplTfFcxd_w7WHOZb3x9UDq8YET_b3WfX18u2Xi_fN1cd3y4vzq0Z3hOSGDa1GRFjNWccEIdQCIX1PWkI5AtLBgA3hAxDTtbQFrailuGcCmU5gLBg5q57vfKcxJLkfXpItokK0fUd4IZY7wgS1llN0GxV_yaCcvEmEuJIqZqdHkEbYMkqjrOg4JQbEYACo5YwLq3q19XqzrzYPGzAafI5qPDI9fvHuu1yFH5IJxliPi8HLvUEM1zOkLDcuaRhH5SHM274JayljGBX0xV_ov3-32FErVT7gvA2lri7HwMbp4MG6kj9nFKOOFk0RvDoSFCbDz7xSc0py-fnTf7Afjlm6Y3UMKUWwh6lgJLebfdu-3G623G92kT27O9GD6HaVyR_Cxfc7</recordid><startdate>20180504</startdate><enddate>20180504</enddate><creator>Dechery, Joseph B</creator><creator>MacLean, Jason N</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-8021-8063</orcidid></search><sort><creationdate>20180504</creationdate><title>Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons</title><author>Dechery, Joseph B ; MacLean, Jason N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c633t-5b2c039fc75659334fe3388323470e36eb1d37be3d6242eca4f418590d6911953</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biology and Life Sciences</topic><topic>Calcium</topic><topic>Calcium imaging</topic><topic>Computer and Information Sciences</topic><topic>Correlation analysis</topic><topic>Correlation coefficient</topic><topic>Correlation coefficients</topic><topic>Graph theory</topic><topic>Local population</topic><topic>Neural circuitry</topic><topic>Neuroimaging</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Parameters</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Population</topic><topic>Populations</topic><topic>Properties (attributes)</topic><topic>Research and Analysis Methods</topic><topic>Social Sciences</topic><topic>Tuning</topic><topic>Visual cortex</topic><topic>Visual stimuli</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dechery, Joseph B</creatorcontrib><creatorcontrib>MacLean, Jason N</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dechery, Joseph B</au><au>MacLean, Jason N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-05-04</date><risdate>2018</risdate><volume>14</volume><issue>5</issue><spage>e1006153</spage><epage>e1006153</epage><pages>e1006153-e1006153</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Visual stimuli evoke activity in visual cortical neuronal populations. Neuronal activity can be selectively modulated by particular visual stimulus parameters, such as the direction of a moving bar of light, resulting in well-defined trial averaged tuning properties. However, given any single stimulus parameter, a large number of neurons in visual cortex remain unmodulated, and the role of this untuned population is not well understood. Here, we use two-photon calcium imaging to record, in an unbiased manner, from large populations of layer 2/3 excitatory neurons in mouse primary visual cortex to describe co-varying activity on single trials in neuronal populations consisting of both tuned and untuned neurons. Specifically, we summarize pairwise covariability with an asymmetric partial correlation coefficient, allowing us to analyze the resultant population correlation structure, or functional network, with graph theory. Using the graph neighbors of a neuron, we find that the local population, including both tuned and untuned neurons, are able to predict individual neuron activity on a moment to moment basis, while also recapitulating tuning properties of tuned neurons. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. We also find that a specific functional triplet motif in the graph results in the best predictions, suggesting a signature of informative correlations in these populations. Variance explained in total population activity scales with the number of neurons imaged, suggesting larger sample sizes are required to fully capture local network interactions. In summary, we show that unbiased sampling of the local population can explain single trial response variability as well as trial-averaged tuning properties in V1, and the ability to predict responses is tied to the occurrence of a functional triplet motif.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29727448</pmid><doi>10.1371/journal.pcbi.1006153</doi><orcidid>https://orcid.org/0000-0002-8021-8063</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-05, Vol.14 (5), p.e1006153-e1006153
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2049928637
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Biology and Life Sciences
Calcium
Calcium imaging
Computer and Information Sciences
Correlation analysis
Correlation coefficient
Correlation coefficients
Graph theory
Local population
Neural circuitry
Neuroimaging
Neurons
Neurosciences
Parameters
Physical Sciences
Physiological aspects
Population
Populations
Properties (attributes)
Research and Analysis Methods
Social Sciences
Tuning
Visual cortex
Visual stimuli
title Functional triplet motifs underlie accurate predictions of single-trial responses in populations of tuned and untuned V1 neurons
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-13T06%3A03%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20triplet%20motifs%20underlie%20accurate%20predictions%20of%20single-trial%20responses%20in%20populations%20of%20tuned%20and%20untuned%20V1%20neurons&rft.jtitle=PLoS%20computational%20biology&rft.au=Dechery,%20Joseph%20B&rft.date=2018-05-04&rft.volume=14&rft.issue=5&rft.spage=e1006153&rft.epage=e1006153&rft.pages=e1006153-e1006153&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006153&rft_dat=%3Cgale_plos_%3EA541064928%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2049928637&rft_id=info:pmid/29727448&rft_galeid=A541064928&rft_doaj_id=oai_doaj_org_article_d9f358daf96743de9bdee4f7579fa8a7&rfr_iscdi=true