Binding of sulphonylureas to plasma proteins - A KATP channel perspective

Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it diff...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-05, Vol.13 (5), p.e0197634
Hauptverfasser: Proks, Peter, Kramer, Holger, Haythorne, Elizabeth, Ashcroft, Frances M
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0197634
container_title PloS one
container_volume 13
creator Proks, Peter
Kramer, Holger
Haythorne, Elizabeth
Ashcroft, Frances M
description Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration
doi_str_mv 10.1371/journal.pone.0197634
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2040745260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a9c9cead1ead4bc3bde42dea0f80e156</doaj_id><sourcerecordid>2040745260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</originalsourceid><addsrcrecordid>eNp1UU1v1DAUtBCIlpZ_gMAS5yzPX_H6grRUha6oRA_lbDm2s5uV1w52Uqn_vlk2rdpDD5at92bmzfMg9InAgjBJvu3SmKMJiz5FvwCiZM34G3RKFKNVTYG9ffY-QR9K2QEItqzr9-iEKikpUHqK1j-66Lq4wanFZQz9NsX7MGZvCh4S7oMpe4P7nAbfxYIrvMK_V7c32G5NjD7g3ufSezt0d_4cvWtNKP7jfJ-hvz8vby-uqus_v9YXq-vKck545WyjWgucWEcaBZbQZUOXjjIJRExbKC5BCGacY4JQkG2tQDXUsZYrmEyzM_TlqNuHVPT8C0VT4CC5oPUBsT4iXDI73edub_K9TqbT_wspb7TJQ2eD10ZZZb1xZDq8saxxnlPnDbRL8ETUk9b3edrY7L2zPg7ZhBeiLzux2-pNutNCCcn5wczXWSCnf6MvwyuW-RFlcyol-_ZpAgF9iPuRpQ9x6znuifb5ubsn0mO-7AEsnKg_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040745260</pqid></control><display><type>article</type><title>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Proks, Peter ; Kramer, Holger ; Haythorne, Elizabeth ; Ashcroft, Frances M</creator><contributor>Nadal, Angel</contributor><creatorcontrib>Proks, Peter ; Kramer, Holger ; Haythorne, Elizabeth ; Ashcroft, Frances M ; Nadal, Angel</creatorcontrib><description>Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration &lt;0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0197634</identifier><identifier>PMID: 29772022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anatomy &amp; physiology ; Animals ; Binding ; Biology and Life Sciences ; Blood plasma ; Bovine serum albumin ; Cattle ; Cells, Cultured ; Channels ; Diabetes ; Drug dosages ; Genetics ; Glibenclamide ; Gliclazide - blood ; Gliclazide - metabolism ; Gliclazide - pharmacokinetics ; Gliclazide - pharmacology ; Glucose ; Glyburide - blood ; Glyburide - metabolism ; Glyburide - pharmacokinetics ; Glyburide - pharmacology ; Humans ; Hypoglycemic Agents - blood ; Hypoglycemic Agents - metabolism ; Hypoglycemic Agents - pharmacokinetics ; Hypoglycemic Agents - pharmacology ; Inhibition ; Insulin ; Insulin - metabolism ; Insulin secretion ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - metabolism ; KATP Channels - antagonists &amp; inhibitors ; Mass spectrometry ; Mass spectroscopy ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mutation ; Oocytes ; Oocytes - drug effects ; Oocytes - metabolism ; Pancreas ; Patch-Clamp Techniques ; Physical Sciences ; Physiology ; Plasma proteins ; Potassium ; Potassium channels ; Protein Binding ; Proteins ; Recombinant Proteins - metabolism ; Research and Analysis Methods ; Rodents ; Secretion ; Serum albumin ; Serum Albumin - metabolism ; Serum Albumin - pharmacology ; Serum Albumin, Bovine - metabolism ; Serum Albumin, Bovine - pharmacology ; Ultrafiltration ; Xenopus laevis</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0197634</ispartof><rights>2018 Proks et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Proks et al 2018 Proks et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</citedby><cites>FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</cites><orcidid>0000-0001-6097-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29772022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nadal, Angel</contributor><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Kramer, Holger</creatorcontrib><creatorcontrib>Haythorne, Elizabeth</creatorcontrib><creatorcontrib>Ashcroft, Frances M</creatorcontrib><title>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration &lt;0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.</description><subject>Anatomy &amp; physiology</subject><subject>Animals</subject><subject>Binding</subject><subject>Biology and Life Sciences</subject><subject>Blood plasma</subject><subject>Bovine serum albumin</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Channels</subject><subject>Diabetes</subject><subject>Drug dosages</subject><subject>Genetics</subject><subject>Glibenclamide</subject><subject>Gliclazide - blood</subject><subject>Gliclazide - metabolism</subject><subject>Gliclazide - pharmacokinetics</subject><subject>Gliclazide - pharmacology</subject><subject>Glucose</subject><subject>Glyburide - blood</subject><subject>Glyburide - metabolism</subject><subject>Glyburide - pharmacokinetics</subject><subject>Glyburide - pharmacology</subject><subject>Humans</subject><subject>Hypoglycemic Agents - blood</subject><subject>Hypoglycemic Agents - metabolism</subject><subject>Hypoglycemic Agents - pharmacokinetics</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Inhibition</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>KATP Channels - antagonists &amp; inhibitors</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Oocytes</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>Pancreas</subject><subject>Patch-Clamp Techniques</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plasma proteins</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Serum albumin</subject><subject>Serum Albumin - metabolism</subject><subject>Serum Albumin - pharmacology</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Serum Albumin, Bovine - pharmacology</subject><subject>Ultrafiltration</subject><subject>Xenopus laevis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1v1DAUtBCIlpZ_gMAS5yzPX_H6grRUha6oRA_lbDm2s5uV1w52Uqn_vlk2rdpDD5at92bmzfMg9InAgjBJvu3SmKMJiz5FvwCiZM34G3RKFKNVTYG9ffY-QR9K2QEItqzr9-iEKikpUHqK1j-66Lq4wanFZQz9NsX7MGZvCh4S7oMpe4P7nAbfxYIrvMK_V7c32G5NjD7g3ufSezt0d_4cvWtNKP7jfJ-hvz8vby-uqus_v9YXq-vKck545WyjWgucWEcaBZbQZUOXjjIJRExbKC5BCGacY4JQkG2tQDXUsZYrmEyzM_TlqNuHVPT8C0VT4CC5oPUBsT4iXDI73edub_K9TqbT_wspb7TJQ2eD10ZZZb1xZDq8saxxnlPnDbRL8ETUk9b3edrY7L2zPg7ZhBeiLzux2-pNutNCCcn5wczXWSCnf6MvwyuW-RFlcyol-_ZpAgF9iPuRpQ9x6znuifb5ubsn0mO-7AEsnKg_</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Proks, Peter</creator><creator>Kramer, Holger</creator><creator>Haythorne, Elizabeth</creator><creator>Ashcroft, Frances M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6097-3646</orcidid></search><sort><creationdate>20180501</creationdate><title>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</title><author>Proks, Peter ; Kramer, Holger ; Haythorne, Elizabeth ; Ashcroft, Frances M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatomy &amp; physiology</topic><topic>Animals</topic><topic>Binding</topic><topic>Biology and Life Sciences</topic><topic>Blood plasma</topic><topic>Bovine serum albumin</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Channels</topic><topic>Diabetes</topic><topic>Drug dosages</topic><topic>Genetics</topic><topic>Glibenclamide</topic><topic>Gliclazide - blood</topic><topic>Gliclazide - metabolism</topic><topic>Gliclazide - pharmacokinetics</topic><topic>Gliclazide - pharmacology</topic><topic>Glucose</topic><topic>Glyburide - blood</topic><topic>Glyburide - metabolism</topic><topic>Glyburide - pharmacokinetics</topic><topic>Glyburide - pharmacology</topic><topic>Humans</topic><topic>Hypoglycemic Agents - blood</topic><topic>Hypoglycemic Agents - metabolism</topic><topic>Hypoglycemic Agents - pharmacokinetics</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Inhibition</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>KATP Channels - antagonists &amp; inhibitors</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Oocytes</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>Pancreas</topic><topic>Patch-Clamp Techniques</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plasma proteins</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Serum albumin</topic><topic>Serum Albumin - metabolism</topic><topic>Serum Albumin - pharmacology</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Serum Albumin, Bovine - pharmacology</topic><topic>Ultrafiltration</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Kramer, Holger</creatorcontrib><creatorcontrib>Haythorne, Elizabeth</creatorcontrib><creatorcontrib>Ashcroft, Frances M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Proks, Peter</au><au>Kramer, Holger</au><au>Haythorne, Elizabeth</au><au>Ashcroft, Frances M</au><au>Nadal, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0197634</spage><pages>e0197634-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration &lt;0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29772022</pmid><doi>10.1371/journal.pone.0197634</doi><orcidid>https://orcid.org/0000-0001-6097-3646</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-05, Vol.13 (5), p.e0197634
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2040745260
source MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Anatomy & physiology
Animals
Binding
Biology and Life Sciences
Blood plasma
Bovine serum albumin
Cattle
Cells, Cultured
Channels
Diabetes
Drug dosages
Genetics
Glibenclamide
Gliclazide - blood
Gliclazide - metabolism
Gliclazide - pharmacokinetics
Gliclazide - pharmacology
Glucose
Glyburide - blood
Glyburide - metabolism
Glyburide - pharmacokinetics
Glyburide - pharmacology
Humans
Hypoglycemic Agents - blood
Hypoglycemic Agents - metabolism
Hypoglycemic Agents - pharmacokinetics
Hypoglycemic Agents - pharmacology
Inhibition
Insulin
Insulin - metabolism
Insulin secretion
Insulin-Secreting Cells - drug effects
Insulin-Secreting Cells - metabolism
KATP Channels - antagonists & inhibitors
Mass spectrometry
Mass spectroscopy
Medicine and Health Sciences
Mice
Mice, Inbred C57BL
Mutation
Oocytes
Oocytes - drug effects
Oocytes - metabolism
Pancreas
Patch-Clamp Techniques
Physical Sciences
Physiology
Plasma proteins
Potassium
Potassium channels
Protein Binding
Proteins
Recombinant Proteins - metabolism
Research and Analysis Methods
Rodents
Secretion
Serum albumin
Serum Albumin - metabolism
Serum Albumin - pharmacology
Serum Albumin, Bovine - metabolism
Serum Albumin, Bovine - pharmacology
Ultrafiltration
Xenopus laevis
title Binding of sulphonylureas to plasma proteins - A KATP channel perspective
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20of%20sulphonylureas%20to%20plasma%20proteins%20-%20A%20KATP%20channel%20perspective&rft.jtitle=PloS%20one&rft.au=Proks,%20Peter&rft.date=2018-05-01&rft.volume=13&rft.issue=5&rft.spage=e0197634&rft.pages=e0197634-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0197634&rft_dat=%3Cproquest_plos_%3E2040745260%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040745260&rft_id=info:pmid/29772022&rft_doaj_id=oai_doaj_org_article_a9c9cead1ead4bc3bde42dea0f80e156&rfr_iscdi=true