Binding of sulphonylureas to plasma proteins - A KATP channel perspective
Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it diff...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-05, Vol.13 (5), p.e0197634 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 5 |
container_start_page | e0197634 |
container_title | PloS one |
container_volume | 13 |
creator | Proks, Peter Kramer, Holger Haythorne, Elizabeth Ashcroft, Frances M |
description | Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration |
doi_str_mv | 10.1371/journal.pone.0197634 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2040745260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_a9c9cead1ead4bc3bde42dea0f80e156</doaj_id><sourcerecordid>2040745260</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</originalsourceid><addsrcrecordid>eNp1UU1v1DAUtBCIlpZ_gMAS5yzPX_H6grRUha6oRA_lbDm2s5uV1w52Uqn_vlk2rdpDD5at92bmzfMg9InAgjBJvu3SmKMJiz5FvwCiZM34G3RKFKNVTYG9ffY-QR9K2QEItqzr9-iEKikpUHqK1j-66Lq4wanFZQz9NsX7MGZvCh4S7oMpe4P7nAbfxYIrvMK_V7c32G5NjD7g3ufSezt0d_4cvWtNKP7jfJ-hvz8vby-uqus_v9YXq-vKck545WyjWgucWEcaBZbQZUOXjjIJRExbKC5BCGacY4JQkG2tQDXUsZYrmEyzM_TlqNuHVPT8C0VT4CC5oPUBsT4iXDI73edub_K9TqbT_wspb7TJQ2eD10ZZZb1xZDq8saxxnlPnDbRL8ETUk9b3edrY7L2zPg7ZhBeiLzux2-pNutNCCcn5wczXWSCnf6MvwyuW-RFlcyol-_ZpAgF9iPuRpQ9x6znuifb5ubsn0mO-7AEsnKg_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040745260</pqid></control><display><type>article</type><title>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Proks, Peter ; Kramer, Holger ; Haythorne, Elizabeth ; Ashcroft, Frances M</creator><contributor>Nadal, Angel</contributor><creatorcontrib>Proks, Peter ; Kramer, Holger ; Haythorne, Elizabeth ; Ashcroft, Frances M ; Nadal, Angel</creatorcontrib><description>Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0197634</identifier><identifier>PMID: 29772022</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anatomy & physiology ; Animals ; Binding ; Biology and Life Sciences ; Blood plasma ; Bovine serum albumin ; Cattle ; Cells, Cultured ; Channels ; Diabetes ; Drug dosages ; Genetics ; Glibenclamide ; Gliclazide - blood ; Gliclazide - metabolism ; Gliclazide - pharmacokinetics ; Gliclazide - pharmacology ; Glucose ; Glyburide - blood ; Glyburide - metabolism ; Glyburide - pharmacokinetics ; Glyburide - pharmacology ; Humans ; Hypoglycemic Agents - blood ; Hypoglycemic Agents - metabolism ; Hypoglycemic Agents - pharmacokinetics ; Hypoglycemic Agents - pharmacology ; Inhibition ; Insulin ; Insulin - metabolism ; Insulin secretion ; Insulin-Secreting Cells - drug effects ; Insulin-Secreting Cells - metabolism ; KATP Channels - antagonists & inhibitors ; Mass spectrometry ; Mass spectroscopy ; Medicine and Health Sciences ; Mice ; Mice, Inbred C57BL ; Mutation ; Oocytes ; Oocytes - drug effects ; Oocytes - metabolism ; Pancreas ; Patch-Clamp Techniques ; Physical Sciences ; Physiology ; Plasma proteins ; Potassium ; Potassium channels ; Protein Binding ; Proteins ; Recombinant Proteins - metabolism ; Research and Analysis Methods ; Rodents ; Secretion ; Serum albumin ; Serum Albumin - metabolism ; Serum Albumin - pharmacology ; Serum Albumin, Bovine - metabolism ; Serum Albumin, Bovine - pharmacology ; Ultrafiltration ; Xenopus laevis</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0197634</ispartof><rights>2018 Proks et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Proks et al 2018 Proks et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</citedby><cites>FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</cites><orcidid>0000-0001-6097-3646</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957440/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957440/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23847,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29772022$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Nadal, Angel</contributor><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Kramer, Holger</creatorcontrib><creatorcontrib>Haythorne, Elizabeth</creatorcontrib><creatorcontrib>Ashcroft, Frances M</creatorcontrib><title>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.</description><subject>Anatomy & physiology</subject><subject>Animals</subject><subject>Binding</subject><subject>Biology and Life Sciences</subject><subject>Blood plasma</subject><subject>Bovine serum albumin</subject><subject>Cattle</subject><subject>Cells, Cultured</subject><subject>Channels</subject><subject>Diabetes</subject><subject>Drug dosages</subject><subject>Genetics</subject><subject>Glibenclamide</subject><subject>Gliclazide - blood</subject><subject>Gliclazide - metabolism</subject><subject>Gliclazide - pharmacokinetics</subject><subject>Gliclazide - pharmacology</subject><subject>Glucose</subject><subject>Glyburide - blood</subject><subject>Glyburide - metabolism</subject><subject>Glyburide - pharmacokinetics</subject><subject>Glyburide - pharmacology</subject><subject>Humans</subject><subject>Hypoglycemic Agents - blood</subject><subject>Hypoglycemic Agents - metabolism</subject><subject>Hypoglycemic Agents - pharmacokinetics</subject><subject>Hypoglycemic Agents - pharmacology</subject><subject>Inhibition</subject><subject>Insulin</subject><subject>Insulin - metabolism</subject><subject>Insulin secretion</subject><subject>Insulin-Secreting Cells - drug effects</subject><subject>Insulin-Secreting Cells - metabolism</subject><subject>KATP Channels - antagonists & inhibitors</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Medicine and Health Sciences</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mutation</subject><subject>Oocytes</subject><subject>Oocytes - drug effects</subject><subject>Oocytes - metabolism</subject><subject>Pancreas</subject><subject>Patch-Clamp Techniques</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plasma proteins</subject><subject>Potassium</subject><subject>Potassium channels</subject><subject>Protein Binding</subject><subject>Proteins</subject><subject>Recombinant Proteins - metabolism</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Secretion</subject><subject>Serum albumin</subject><subject>Serum Albumin - metabolism</subject><subject>Serum Albumin - pharmacology</subject><subject>Serum Albumin, Bovine - metabolism</subject><subject>Serum Albumin, Bovine - pharmacology</subject><subject>Ultrafiltration</subject><subject>Xenopus laevis</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNp1UU1v1DAUtBCIlpZ_gMAS5yzPX_H6grRUha6oRA_lbDm2s5uV1w52Uqn_vlk2rdpDD5at92bmzfMg9InAgjBJvu3SmKMJiz5FvwCiZM34G3RKFKNVTYG9ffY-QR9K2QEItqzr9-iEKikpUHqK1j-66Lq4wanFZQz9NsX7MGZvCh4S7oMpe4P7nAbfxYIrvMK_V7c32G5NjD7g3ufSezt0d_4cvWtNKP7jfJ-hvz8vby-uqus_v9YXq-vKck545WyjWgucWEcaBZbQZUOXjjIJRExbKC5BCGacY4JQkG2tQDXUsZYrmEyzM_TlqNuHVPT8C0VT4CC5oPUBsT4iXDI73edub_K9TqbT_wspb7TJQ2eD10ZZZb1xZDq8saxxnlPnDbRL8ETUk9b3edrY7L2zPg7ZhBeiLzux2-pNutNCCcn5wczXWSCnf6MvwyuW-RFlcyol-_ZpAgF9iPuRpQ9x6znuifb5ubsn0mO-7AEsnKg_</recordid><startdate>20180501</startdate><enddate>20180501</enddate><creator>Proks, Peter</creator><creator>Kramer, Holger</creator><creator>Haythorne, Elizabeth</creator><creator>Ashcroft, Frances M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6097-3646</orcidid></search><sort><creationdate>20180501</creationdate><title>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</title><author>Proks, Peter ; Kramer, Holger ; Haythorne, Elizabeth ; Ashcroft, Frances M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4414-dcb9fc041cd1b90c128b28d2370151979470553add351207f6909b2d3f4907203</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anatomy & physiology</topic><topic>Animals</topic><topic>Binding</topic><topic>Biology and Life Sciences</topic><topic>Blood plasma</topic><topic>Bovine serum albumin</topic><topic>Cattle</topic><topic>Cells, Cultured</topic><topic>Channels</topic><topic>Diabetes</topic><topic>Drug dosages</topic><topic>Genetics</topic><topic>Glibenclamide</topic><topic>Gliclazide - blood</topic><topic>Gliclazide - metabolism</topic><topic>Gliclazide - pharmacokinetics</topic><topic>Gliclazide - pharmacology</topic><topic>Glucose</topic><topic>Glyburide - blood</topic><topic>Glyburide - metabolism</topic><topic>Glyburide - pharmacokinetics</topic><topic>Glyburide - pharmacology</topic><topic>Humans</topic><topic>Hypoglycemic Agents - blood</topic><topic>Hypoglycemic Agents - metabolism</topic><topic>Hypoglycemic Agents - pharmacokinetics</topic><topic>Hypoglycemic Agents - pharmacology</topic><topic>Inhibition</topic><topic>Insulin</topic><topic>Insulin - metabolism</topic><topic>Insulin secretion</topic><topic>Insulin-Secreting Cells - drug effects</topic><topic>Insulin-Secreting Cells - metabolism</topic><topic>KATP Channels - antagonists & inhibitors</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Medicine and Health Sciences</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mutation</topic><topic>Oocytes</topic><topic>Oocytes - drug effects</topic><topic>Oocytes - metabolism</topic><topic>Pancreas</topic><topic>Patch-Clamp Techniques</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plasma proteins</topic><topic>Potassium</topic><topic>Potassium channels</topic><topic>Protein Binding</topic><topic>Proteins</topic><topic>Recombinant Proteins - metabolism</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Secretion</topic><topic>Serum albumin</topic><topic>Serum Albumin - metabolism</topic><topic>Serum Albumin - pharmacology</topic><topic>Serum Albumin, Bovine - metabolism</topic><topic>Serum Albumin, Bovine - pharmacology</topic><topic>Ultrafiltration</topic><topic>Xenopus laevis</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Proks, Peter</creatorcontrib><creatorcontrib>Kramer, Holger</creatorcontrib><creatorcontrib>Haythorne, Elizabeth</creatorcontrib><creatorcontrib>Ashcroft, Frances M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Proks, Peter</au><au>Kramer, Holger</au><au>Haythorne, Elizabeth</au><au>Ashcroft, Frances M</au><au>Nadal, Angel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Binding of sulphonylureas to plasma proteins - A KATP channel perspective</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-01</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0197634</spage><pages>e0197634-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Sulphonylurea drugs stimulate insulin secretion from pancreatic β-cells primarily by inhibiting ATP sensitive potassium (KATP) channels in the β-cell membrane. The effective sulphonylurea concentration at its site of action is significantly attenuated by binding to serum albumin, which makes it difficult to compare in vitro and in vivo data. We therefore measured the ability of gliclazide and glibenclamide to inhibit KATP channels and stimulate insulin secretion in the presence of serum albumin. We used this data, together with estimates of free drug concentrations from binding studies, to predict the extent of sulphonylurea inhibition of KATP channels at therapeutic concentrations in vivo. KATP currents from mouse pancreatic β-cells and Xenopus oocytes were measured using the patch-clamp technique. Gliclazide and glibenclamide binding to human plasma were determined in spiked plasma samples using an ultrafiltration-mass spectrometry approach. Bovine serum albumin (60g/l) produced a mild, non-significant reduction of gliclazide block of KATP currents in pancreatic β-cells and Xenopus oocytes. In contrast, glibenclamide inhibition of recombinant KATP channels was dramatically suppressed by albumin (predicted free drug concentration <0.1%). Insulin secretion was also reduced. Free concentrations of gliclazide and glibenclamide in the presence of human plasma measured in binding experiments were 15% and 0.05%, respectively. Our data suggest the free concentration of glibenclamide in plasma is too low to account for the drug's therapeutic effect. In contrast, the free gliclazide concentration in plasma is high enough to close KATP channels and stimulate insulin secretion.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29772022</pmid><doi>10.1371/journal.pone.0197634</doi><orcidid>https://orcid.org/0000-0001-6097-3646</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-05, Vol.13 (5), p.e0197634 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2040745260 |
source | MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Anatomy & physiology Animals Binding Biology and Life Sciences Blood plasma Bovine serum albumin Cattle Cells, Cultured Channels Diabetes Drug dosages Genetics Glibenclamide Gliclazide - blood Gliclazide - metabolism Gliclazide - pharmacokinetics Gliclazide - pharmacology Glucose Glyburide - blood Glyburide - metabolism Glyburide - pharmacokinetics Glyburide - pharmacology Humans Hypoglycemic Agents - blood Hypoglycemic Agents - metabolism Hypoglycemic Agents - pharmacokinetics Hypoglycemic Agents - pharmacology Inhibition Insulin Insulin - metabolism Insulin secretion Insulin-Secreting Cells - drug effects Insulin-Secreting Cells - metabolism KATP Channels - antagonists & inhibitors Mass spectrometry Mass spectroscopy Medicine and Health Sciences Mice Mice, Inbred C57BL Mutation Oocytes Oocytes - drug effects Oocytes - metabolism Pancreas Patch-Clamp Techniques Physical Sciences Physiology Plasma proteins Potassium Potassium channels Protein Binding Proteins Recombinant Proteins - metabolism Research and Analysis Methods Rodents Secretion Serum albumin Serum Albumin - metabolism Serum Albumin - pharmacology Serum Albumin, Bovine - metabolism Serum Albumin, Bovine - pharmacology Ultrafiltration Xenopus laevis |
title | Binding of sulphonylureas to plasma proteins - A KATP channel perspective |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T13%3A14%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Binding%20of%20sulphonylureas%20to%20plasma%20proteins%20-%20A%20KATP%20channel%20perspective&rft.jtitle=PloS%20one&rft.au=Proks,%20Peter&rft.date=2018-05-01&rft.volume=13&rft.issue=5&rft.spage=e0197634&rft.pages=e0197634-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0197634&rft_dat=%3Cproquest_plos_%3E2040745260%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040745260&rft_id=info:pmid/29772022&rft_doaj_id=oai_doaj_org_article_a9c9cead1ead4bc3bde42dea0f80e156&rfr_iscdi=true |