DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression
Production of the iron regulatory peptide hepcidin is tightly controlled by a network of proteins in hepatocytes that sense levels of iron in the circulation (as diferric-transferrin) and in tissues (in ferritin). Human studies show high variability in the normal range of serum hepcidin levels. We h...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-05, Vol.13 (5), p.e0197863-e0197863 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0197863 |
---|---|
container_issue | 5 |
container_start_page | e0197863 |
container_title | PloS one |
container_volume | 13 |
creator | Sharp, Paul A Clarkson, Rachel Hussain, Ahmed Weeks, Robert J Morison, Ian M |
description | Production of the iron regulatory peptide hepcidin is tightly controlled by a network of proteins in hepatocytes that sense levels of iron in the circulation (as diferric-transferrin) and in tissues (in ferritin). Human studies show high variability in the normal range of serum hepcidin levels. We have postulated that this may, in part, be related to inter-individual variability in the expression of genes in the iron sensing pathway, potentially governed by epigenetic factors. Here, we have investigated whether genes encoding hepatic iron sensing proteins and hepcidin are regulated by DNA methylation. Experiments were performed on two human hepatoma cell lines, HepG2 cells and Huh7 cells. Basal expression of TFR2 and HAMP was significantly lower in Huh7 cells compared with HepG2 cells. Analysis of bisulphite-converted DNA from Huh7 cells revealed partial methylation of TFR2 (alpha transcript), which could result in gene silencing. Demethylation using 5-aza-2'-deoxycitidine (AZA) increased TFR2 mRNA expression in Huh7. PCR analysis of bisulphite-converted HAMP promoter DNA, using methylation-specific primers, revealed no differences between cell lines. However, HAMP mRNA expression in Huh7 was increased by AZA treatment, suggesting that methylation of one or more iron sensing genes may indirectly influence HAMP expression. Our study provides evidence that DNA methylation might control expression of HAMP and other hepatic iron sensing genes, and indicates that epigenetic influences on iron homeostasis warrant further investigation. |
doi_str_mv | 10.1371/journal.pone.0197863 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2040744664</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539145492</galeid><doaj_id>oai_doaj_org_article_8365e31a5a7146c3a98697cb32be5261</doaj_id><sourcerecordid>A539145492</sourcerecordid><originalsourceid>FETCH-LOGICAL-c758t-175bcdd2c113e94b194866640b4f64334df789d6836cf1cfaa062b35aeaf19753</originalsourceid><addsrcrecordid>eNqNkstu1DAUhiMEoqXwBggiISFYzGDHt3iDNCq3kSoqcV1ajnOSuMrYUztB7dvj6aTVBHWBsoh98p3_XPJn2XOMlpgI_O7Cj8Hpfrn1DpYIS1Fy8iA7xpIUC14g8vDgfJQ9ifECIUZKzh9nR4UUAsuSHme_P3xd5RsYuuteD9a73Dd5B9t0NrkN6R7BRevavAUHMdeuzocO8gDtOEswtrYuh6ttgBhT-Gn2qNF9hGfT-yT7-enjj9Mvi7Pzz-vT1dnCCFYOCyxYZeq6MBgTkLTCkqYOOUUVbTglhNaNKGXNS8JNg02jNeJFRZgG3aSRGTnJXu51t72PatpJVAWiSFCalBKx3hO11xdqG-xGh2vltVU3AR9apUMatweVqjAgWDMtMOWGaFlyKUxFigpYwXHSej9VG6sN1AbcEHQ_E51_cbZTrf-jmGQidZQE3kwCwV-OEAe1sdFA32sHfrzpG3OCSLGr9eof9P7pJqrVaQDrGp_qmp2oWjEiMWVUFola3kOlp4aNNclAjU3xWcLbWUJiBrgaWj3GqNbfv_0_e_5rzr4-YDvQ_dBF3487J8U5SPegCT7GAM3dkjFSO__fbkPt_K8m_6e0F4c_6C7p1vDkLxZ1_vM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040744664</pqid></control><display><type>article</type><title>DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sharp, Paul A ; Clarkson, Rachel ; Hussain, Ahmed ; Weeks, Robert J ; Morison, Ian M</creator><contributor>Pantopoulos, Kostas</contributor><creatorcontrib>Sharp, Paul A ; Clarkson, Rachel ; Hussain, Ahmed ; Weeks, Robert J ; Morison, Ian M ; Pantopoulos, Kostas</creatorcontrib><description>Production of the iron regulatory peptide hepcidin is tightly controlled by a network of proteins in hepatocytes that sense levels of iron in the circulation (as diferric-transferrin) and in tissues (in ferritin). Human studies show high variability in the normal range of serum hepcidin levels. We have postulated that this may, in part, be related to inter-individual variability in the expression of genes in the iron sensing pathway, potentially governed by epigenetic factors. Here, we have investigated whether genes encoding hepatic iron sensing proteins and hepcidin are regulated by DNA methylation. Experiments were performed on two human hepatoma cell lines, HepG2 cells and Huh7 cells. Basal expression of TFR2 and HAMP was significantly lower in Huh7 cells compared with HepG2 cells. Analysis of bisulphite-converted DNA from Huh7 cells revealed partial methylation of TFR2 (alpha transcript), which could result in gene silencing. Demethylation using 5-aza-2'-deoxycitidine (AZA) increased TFR2 mRNA expression in Huh7. PCR analysis of bisulphite-converted HAMP promoter DNA, using methylation-specific primers, revealed no differences between cell lines. However, HAMP mRNA expression in Huh7 was increased by AZA treatment, suggesting that methylation of one or more iron sensing genes may indirectly influence HAMP expression. Our study provides evidence that DNA methylation might control expression of HAMP and other hepatic iron sensing genes, and indicates that epigenetic influences on iron homeostasis warrant further investigation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0197863</identifier><identifier>PMID: 29771984</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology and life sciences ; Biotechnology ; Cancer ; Cell lines ; Cellular proteins ; Demethylation ; Deoxyribonucleic acid ; Detection ; DNA ; DNA methylation ; Epigenetics ; Ferritin ; Gene expression ; Gene regulation ; Gene silencing ; Genes ; Hepatocytes ; Hepatoma ; Hepcidin ; Homeostasis ; Human performance ; Iron ; Iron and steel making ; Liver ; Liver cancer ; Medicine and Health Sciences ; Methylation ; Primers ; Prostate ; Proteins ; Research and Analysis Methods ; Rodents ; Transcription ; Transferrin ; Transferrins ; Variability</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0197863-e0197863</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Sharp et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Sharp et al 2018 Sharp et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c758t-175bcdd2c113e94b194866640b4f64334df789d6836cf1cfaa062b35aeaf19753</citedby><cites>FETCH-LOGICAL-c758t-175bcdd2c113e94b194866640b4f64334df789d6836cf1cfaa062b35aeaf19753</cites><orcidid>0000-0003-2246-1791 ; 0000-0003-3400-6702 ; 0000-0003-3616-0025</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957407/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957407/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23864,27922,27923,53789,53791,79370,79371</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29771984$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Pantopoulos, Kostas</contributor><creatorcontrib>Sharp, Paul A</creatorcontrib><creatorcontrib>Clarkson, Rachel</creatorcontrib><creatorcontrib>Hussain, Ahmed</creatorcontrib><creatorcontrib>Weeks, Robert J</creatorcontrib><creatorcontrib>Morison, Ian M</creatorcontrib><title>DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Production of the iron regulatory peptide hepcidin is tightly controlled by a network of proteins in hepatocytes that sense levels of iron in the circulation (as diferric-transferrin) and in tissues (in ferritin). Human studies show high variability in the normal range of serum hepcidin levels. We have postulated that this may, in part, be related to inter-individual variability in the expression of genes in the iron sensing pathway, potentially governed by epigenetic factors. Here, we have investigated whether genes encoding hepatic iron sensing proteins and hepcidin are regulated by DNA methylation. Experiments were performed on two human hepatoma cell lines, HepG2 cells and Huh7 cells. Basal expression of TFR2 and HAMP was significantly lower in Huh7 cells compared with HepG2 cells. Analysis of bisulphite-converted DNA from Huh7 cells revealed partial methylation of TFR2 (alpha transcript), which could result in gene silencing. Demethylation using 5-aza-2'-deoxycitidine (AZA) increased TFR2 mRNA expression in Huh7. PCR analysis of bisulphite-converted HAMP promoter DNA, using methylation-specific primers, revealed no differences between cell lines. However, HAMP mRNA expression in Huh7 was increased by AZA treatment, suggesting that methylation of one or more iron sensing genes may indirectly influence HAMP expression. Our study provides evidence that DNA methylation might control expression of HAMP and other hepatic iron sensing genes, and indicates that epigenetic influences on iron homeostasis warrant further investigation.</description><subject>Biology and life sciences</subject><subject>Biotechnology</subject><subject>Cancer</subject><subject>Cell lines</subject><subject>Cellular proteins</subject><subject>Demethylation</subject><subject>Deoxyribonucleic acid</subject><subject>Detection</subject><subject>DNA</subject><subject>DNA methylation</subject><subject>Epigenetics</subject><subject>Ferritin</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Gene silencing</subject><subject>Genes</subject><subject>Hepatocytes</subject><subject>Hepatoma</subject><subject>Hepcidin</subject><subject>Homeostasis</subject><subject>Human performance</subject><subject>Iron</subject><subject>Iron and steel making</subject><subject>Liver</subject><subject>Liver cancer</subject><subject>Medicine and Health Sciences</subject><subject>Methylation</subject><subject>Primers</subject><subject>Prostate</subject><subject>Proteins</subject><subject>Research and Analysis Methods</subject><subject>Rodents</subject><subject>Transcription</subject><subject>Transferrin</subject><subject>Transferrins</subject><subject>Variability</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkstu1DAUhiMEoqXwBggiISFYzGDHt3iDNCq3kSoqcV1ajnOSuMrYUztB7dvj6aTVBHWBsoh98p3_XPJn2XOMlpgI_O7Cj8Hpfrn1DpYIS1Fy8iA7xpIUC14g8vDgfJQ9ifECIUZKzh9nR4UUAsuSHme_P3xd5RsYuuteD9a73Dd5B9t0NrkN6R7BRevavAUHMdeuzocO8gDtOEswtrYuh6ttgBhT-Gn2qNF9hGfT-yT7-enjj9Mvi7Pzz-vT1dnCCFYOCyxYZeq6MBgTkLTCkqYOOUUVbTglhNaNKGXNS8JNg02jNeJFRZgG3aSRGTnJXu51t72PatpJVAWiSFCalBKx3hO11xdqG-xGh2vltVU3AR9apUMatweVqjAgWDMtMOWGaFlyKUxFigpYwXHSej9VG6sN1AbcEHQ_E51_cbZTrf-jmGQidZQE3kwCwV-OEAe1sdFA32sHfrzpG3OCSLGr9eof9P7pJqrVaQDrGp_qmp2oWjEiMWVUFola3kOlp4aNNclAjU3xWcLbWUJiBrgaWj3GqNbfv_0_e_5rzr4-YDvQ_dBF3487J8U5SPegCT7GAM3dkjFSO__fbkPt_K8m_6e0F4c_6C7p1vDkLxZ1_vM</recordid><startdate>20180517</startdate><enddate>20180517</enddate><creator>Sharp, Paul A</creator><creator>Clarkson, Rachel</creator><creator>Hussain, Ahmed</creator><creator>Weeks, Robert J</creator><creator>Morison, Ian M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2246-1791</orcidid><orcidid>https://orcid.org/0000-0003-3400-6702</orcidid><orcidid>https://orcid.org/0000-0003-3616-0025</orcidid></search><sort><creationdate>20180517</creationdate><title>DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression</title><author>Sharp, Paul A ; Clarkson, Rachel ; Hussain, Ahmed ; Weeks, Robert J ; Morison, Ian M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c758t-175bcdd2c113e94b194866640b4f64334df789d6836cf1cfaa062b35aeaf19753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biology and life sciences</topic><topic>Biotechnology</topic><topic>Cancer</topic><topic>Cell lines</topic><topic>Cellular proteins</topic><topic>Demethylation</topic><topic>Deoxyribonucleic acid</topic><topic>Detection</topic><topic>DNA</topic><topic>DNA methylation</topic><topic>Epigenetics</topic><topic>Ferritin</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Gene silencing</topic><topic>Genes</topic><topic>Hepatocytes</topic><topic>Hepatoma</topic><topic>Hepcidin</topic><topic>Homeostasis</topic><topic>Human performance</topic><topic>Iron</topic><topic>Iron and steel making</topic><topic>Liver</topic><topic>Liver cancer</topic><topic>Medicine and Health Sciences</topic><topic>Methylation</topic><topic>Primers</topic><topic>Prostate</topic><topic>Proteins</topic><topic>Research and Analysis Methods</topic><topic>Rodents</topic><topic>Transcription</topic><topic>Transferrin</topic><topic>Transferrins</topic><topic>Variability</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sharp, Paul A</creatorcontrib><creatorcontrib>Clarkson, Rachel</creatorcontrib><creatorcontrib>Hussain, Ahmed</creatorcontrib><creatorcontrib>Weeks, Robert J</creatorcontrib><creatorcontrib>Morison, Ian M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sharp, Paul A</au><au>Clarkson, Rachel</au><au>Hussain, Ahmed</au><au>Weeks, Robert J</au><au>Morison, Ian M</au><au>Pantopoulos, Kostas</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-17</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0197863</spage><epage>e0197863</epage><pages>e0197863-e0197863</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Production of the iron regulatory peptide hepcidin is tightly controlled by a network of proteins in hepatocytes that sense levels of iron in the circulation (as diferric-transferrin) and in tissues (in ferritin). Human studies show high variability in the normal range of serum hepcidin levels. We have postulated that this may, in part, be related to inter-individual variability in the expression of genes in the iron sensing pathway, potentially governed by epigenetic factors. Here, we have investigated whether genes encoding hepatic iron sensing proteins and hepcidin are regulated by DNA methylation. Experiments were performed on two human hepatoma cell lines, HepG2 cells and Huh7 cells. Basal expression of TFR2 and HAMP was significantly lower in Huh7 cells compared with HepG2 cells. Analysis of bisulphite-converted DNA from Huh7 cells revealed partial methylation of TFR2 (alpha transcript), which could result in gene silencing. Demethylation using 5-aza-2'-deoxycitidine (AZA) increased TFR2 mRNA expression in Huh7. PCR analysis of bisulphite-converted HAMP promoter DNA, using methylation-specific primers, revealed no differences between cell lines. However, HAMP mRNA expression in Huh7 was increased by AZA treatment, suggesting that methylation of one or more iron sensing genes may indirectly influence HAMP expression. Our study provides evidence that DNA methylation might control expression of HAMP and other hepatic iron sensing genes, and indicates that epigenetic influences on iron homeostasis warrant further investigation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29771984</pmid><doi>10.1371/journal.pone.0197863</doi><tpages>e0197863</tpages><orcidid>https://orcid.org/0000-0003-2246-1791</orcidid><orcidid>https://orcid.org/0000-0003-3400-6702</orcidid><orcidid>https://orcid.org/0000-0003-3616-0025</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-05, Vol.13 (5), p.e0197863-e0197863 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2040744664 |
source | DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Biology and life sciences Biotechnology Cancer Cell lines Cellular proteins Demethylation Deoxyribonucleic acid Detection DNA DNA methylation Epigenetics Ferritin Gene expression Gene regulation Gene silencing Genes Hepatocytes Hepatoma Hepcidin Homeostasis Human performance Iron Iron and steel making Liver Liver cancer Medicine and Health Sciences Methylation Primers Prostate Proteins Research and Analysis Methods Rodents Transcription Transferrin Transferrins Variability |
title | DNA methylation of hepatic iron sensing genes and the regulation of hepcidin expression |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T11%3A34%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20methylation%20of%20hepatic%20iron%20sensing%20genes%20and%20the%20regulation%20of%20hepcidin%20expression&rft.jtitle=PloS%20one&rft.au=Sharp,%20Paul%20A&rft.date=2018-05-17&rft.volume=13&rft.issue=5&rft.spage=e0197863&rft.epage=e0197863&rft.pages=e0197863-e0197863&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0197863&rft_dat=%3Cgale_plos_%3EA539145492%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040744664&rft_id=info:pmid/29771984&rft_galeid=A539145492&rft_doaj_id=oai_doaj_org_article_8365e31a5a7146c3a98697cb32be5261&rfr_iscdi=true |