A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem
The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Altho...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-05, Vol.13 (5), p.e0195675-e0195675 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0195675 |
---|---|
container_issue | 5 |
container_start_page | e0195675 |
container_title | PloS one |
container_volume | 13 |
creator | Zamli, Kamal Z Din, Fakhrud Ahmed, Bestoun S Bures, Miroslav |
description | The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level. |
doi_str_mv | 10.1371/journal.pone.0195675 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2040744631</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A539145455</galeid><doaj_id>oai_doaj_org_article_d09acc526b914fcba996ee7739333588</doaj_id><sourcerecordid>A539145455</sourcerecordid><originalsourceid>FETCH-LOGICAL-c729t-14849269b58054e7962979eea6adaee8d73f33bd4a499f937d64fba1124de6f23</originalsourceid><addsrcrecordid>eNqNk12L1DAUhoso7rr6D0QLgig4Y9N8tLkRhvVrYGHxa2_DaXM6k7VtxiRV119vOjO7TGUvpBcp6fO-OedtTpI8Jtmc0IK8vrSD66Gdb2yP84xILgp-JzkmkuYzkWf07sH7UfLA-8ss47QU4n5ylMuiIJKUx4ldpOuryhmdfpq1CK43_Sr1psdZbbdLBR516oODgKurtLEuBa0dej-SYY1pbbvK9BCsM9CmAX1I_WACpp3pTWf-QDC2TzfOVi12D5N7DbQeH-3Xk-Tb-3dfTz_Ozs4_LE8XZ7O6yGWYEVYymQtZ8TLjDAspYskSEQRoQCx1QRtKK82ASdlIWmjBmgoIyZlG0eT0JHm689201qt9Vl7lGcsKxgQlkVjuCG3hUm2c6cBdKQtGbTesWylwwdQtKp1JqGuei0oS1tQVSCkQi4JKSikvy-j1auflf-FmqCZub83FYuv2HQZVipLyiL_ZFzdUHeoa-xhvO1FNv_RmrVb2p-KSb6s_SV7sDZz9McTEVWd8jW0LPdph2yYRNKNyRJ_9g94exp5aQezX9I2N59ajqVpwGrvmjI91z2-h4qOxM3W8h42J-xPBy4kgMgF_hxUM3qvll8__z55fTNnnB-waoQ1rb9thvGl-CrIdWDvrvcPmJmSSqXGMrtNQ4xip_RhF2ZPDH3Qjup4b-hfSLBkO</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2040744631</pqid></control><display><type>article</type><title>A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Zamli, Kamal Z ; Din, Fakhrud ; Ahmed, Bestoun S ; Bures, Miroslav</creator><contributor>Lewis, Peter R.</contributor><creatorcontrib>Zamli, Kamal Z ; Din, Fakhrud ; Ahmed, Bestoun S ; Bures, Miroslav ; Lewis, Peter R.</creatorcontrib><description>The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0195675</identifier><identifier>PMID: 29771918</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Artificial intelligence ; Biology and Life Sciences ; Combinatorial analysis ; Computer and Information Sciences ; Computer engineering ; Computer Science ; Confidence intervals ; Cybernetics ; Datavetenskap ; Electrical engineering ; Genetic algorithms ; Heuristic ; Heuristic methods ; Jumping ; Learning ; Machine learning ; Maxima ; Medicine and Health Sciences ; Minima ; Optimization ; Particle swarm optimization ; Physical Sciences ; Reinforcement ; Reinforcement learning (Machine learning) ; Research and Analysis Methods ; Search process ; Size reduction ; Software engineering ; Statistical analysis ; Strategy ; Swarm intelligence ; Trigonometric functions</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0195675-e0195675</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Zamli et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Zamli et al 2018 Zamli et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c729t-14849269b58054e7962979eea6adaee8d73f33bd4a499f937d64fba1124de6f23</citedby><cites>FETCH-LOGICAL-c729t-14849269b58054e7962979eea6adaee8d73f33bd4a499f937d64fba1124de6f23</cites><orcidid>0000-0001-9051-7609</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957446/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5957446/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,552,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29771918$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:kau:diva-86835$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Lewis, Peter R.</contributor><creatorcontrib>Zamli, Kamal Z</creatorcontrib><creatorcontrib>Din, Fakhrud</creatorcontrib><creatorcontrib>Ahmed, Bestoun S</creatorcontrib><creatorcontrib>Bures, Miroslav</creatorcontrib><title>A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Biology and Life Sciences</subject><subject>Combinatorial analysis</subject><subject>Computer and Information Sciences</subject><subject>Computer engineering</subject><subject>Computer Science</subject><subject>Confidence intervals</subject><subject>Cybernetics</subject><subject>Datavetenskap</subject><subject>Electrical engineering</subject><subject>Genetic algorithms</subject><subject>Heuristic</subject><subject>Heuristic methods</subject><subject>Jumping</subject><subject>Learning</subject><subject>Machine learning</subject><subject>Maxima</subject><subject>Medicine and Health Sciences</subject><subject>Minima</subject><subject>Optimization</subject><subject>Particle swarm optimization</subject><subject>Physical Sciences</subject><subject>Reinforcement</subject><subject>Reinforcement learning (Machine learning)</subject><subject>Research and Analysis Methods</subject><subject>Search process</subject><subject>Size reduction</subject><subject>Software engineering</subject><subject>Statistical analysis</subject><subject>Strategy</subject><subject>Swarm intelligence</subject><subject>Trigonometric functions</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk12L1DAUhoso7rr6D0QLgig4Y9N8tLkRhvVrYGHxa2_DaXM6k7VtxiRV119vOjO7TGUvpBcp6fO-OedtTpI8Jtmc0IK8vrSD66Gdb2yP84xILgp-JzkmkuYzkWf07sH7UfLA-8ss47QU4n5ylMuiIJKUx4ldpOuryhmdfpq1CK43_Sr1psdZbbdLBR516oODgKurtLEuBa0dej-SYY1pbbvK9BCsM9CmAX1I_WACpp3pTWf-QDC2TzfOVi12D5N7DbQeH-3Xk-Tb-3dfTz_Ozs4_LE8XZ7O6yGWYEVYymQtZ8TLjDAspYskSEQRoQCx1QRtKK82ASdlIWmjBmgoIyZlG0eT0JHm689201qt9Vl7lGcsKxgQlkVjuCG3hUm2c6cBdKQtGbTesWylwwdQtKp1JqGuei0oS1tQVSCkQi4JKSikvy-j1auflf-FmqCZub83FYuv2HQZVipLyiL_ZFzdUHeoa-xhvO1FNv_RmrVb2p-KSb6s_SV7sDZz9McTEVWd8jW0LPdph2yYRNKNyRJ_9g94exp5aQezX9I2N59ajqVpwGrvmjI91z2-h4qOxM3W8h42J-xPBy4kgMgF_hxUM3qvll8__z55fTNnnB-waoQ1rb9thvGl-CrIdWDvrvcPmJmSSqXGMrtNQ4xip_RhF2ZPDH3Qjup4b-hfSLBkO</recordid><startdate>20180517</startdate><enddate>20180517</enddate><creator>Zamli, Kamal Z</creator><creator>Din, Fakhrud</creator><creator>Ahmed, Bestoun S</creator><creator>Bures, Miroslav</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>AAMOE</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DG3</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9051-7609</orcidid></search><sort><creationdate>20180517</creationdate><title>A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem</title><author>Zamli, Kamal Z ; Din, Fakhrud ; Ahmed, Bestoun S ; Bures, Miroslav</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c729t-14849269b58054e7962979eea6adaee8d73f33bd4a499f937d64fba1124de6f23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Biology and Life Sciences</topic><topic>Combinatorial analysis</topic><topic>Computer and Information Sciences</topic><topic>Computer engineering</topic><topic>Computer Science</topic><topic>Confidence intervals</topic><topic>Cybernetics</topic><topic>Datavetenskap</topic><topic>Electrical engineering</topic><topic>Genetic algorithms</topic><topic>Heuristic</topic><topic>Heuristic methods</topic><topic>Jumping</topic><topic>Learning</topic><topic>Machine learning</topic><topic>Maxima</topic><topic>Medicine and Health Sciences</topic><topic>Minima</topic><topic>Optimization</topic><topic>Particle swarm optimization</topic><topic>Physical Sciences</topic><topic>Reinforcement</topic><topic>Reinforcement learning (Machine learning)</topic><topic>Research and Analysis Methods</topic><topic>Search process</topic><topic>Size reduction</topic><topic>Software engineering</topic><topic>Statistical analysis</topic><topic>Strategy</topic><topic>Swarm intelligence</topic><topic>Trigonometric functions</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamli, Kamal Z</creatorcontrib><creatorcontrib>Din, Fakhrud</creatorcontrib><creatorcontrib>Ahmed, Bestoun S</creatorcontrib><creatorcontrib>Bures, Miroslav</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Karlstads universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Karlstads universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamli, Kamal Z</au><au>Din, Fakhrud</au><au>Ahmed, Bestoun S</au><au>Bures, Miroslav</au><au>Lewis, Peter R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-17</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0195675</spage><epage>e0195675</epage><pages>e0195675-e0195675</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The sine-cosine algorithm (SCA) is a new population-based meta-heuristic algorithm. In addition to exploiting sine and cosine functions to perform local and global searches (hence the name sine-cosine), the SCA introduces several random and adaptive parameters to facilitate the search process. Although it shows promising results, the search process of the SCA is vulnerable to local minima/maxima due to the adoption of a fixed switch probability and the bounded magnitude of the sine and cosine functions (from -1 to 1). In this paper, we propose a new hybrid Q-learning sine-cosine- based strategy, called the Q-learning sine-cosine algorithm (QLSCA). Within the QLSCA, we eliminate the switching probability. Instead, we rely on the Q-learning algorithm (based on the penalty and reward mechanism) to dynamically identify the best operation during runtime. Additionally, we integrate two new operations (Lévy flight motion and crossover) into the QLSCA to facilitate jumping out of local minima/maxima and enhance the solution diversity. To assess its performance, we adopt the QLSCA for the combinatorial test suite minimization problem. Experimental results reveal that the QLSCA is statistically superior with regard to test suite size reduction compared to recent state-of-the-art strategies, including the original SCA, the particle swarm test generator (PSTG), adaptive particle swarm optimization (APSO) and the cuckoo search strategy (CS) at the 95% confidence level. However, concerning the comparison with discrete particle swarm optimization (DPSO), there is no significant difference in performance at the 95% confidence level. On a positive note, the QLSCA statistically outperforms the DPSO in certain configurations at the 90% confidence level.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29771918</pmid><doi>10.1371/journal.pone.0195675</doi><tpages>e0195675</tpages><orcidid>https://orcid.org/0000-0001-9051-7609</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-05, Vol.13 (5), p.e0195675-e0195675 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2040744631 |
source | DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Algorithms Artificial intelligence Biology and Life Sciences Combinatorial analysis Computer and Information Sciences Computer engineering Computer Science Confidence intervals Cybernetics Datavetenskap Electrical engineering Genetic algorithms Heuristic Heuristic methods Jumping Learning Machine learning Maxima Medicine and Health Sciences Minima Optimization Particle swarm optimization Physical Sciences Reinforcement Reinforcement learning (Machine learning) Research and Analysis Methods Search process Size reduction Software engineering Statistical analysis Strategy Swarm intelligence Trigonometric functions |
title | A hybrid Q-learning sine-cosine-based strategy for addressing the combinatorial test suite minimization problem |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T06%3A21%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20hybrid%20Q-learning%20sine-cosine-based%20strategy%20for%20addressing%20the%20combinatorial%20test%20suite%20minimization%20problem&rft.jtitle=PloS%20one&rft.au=Zamli,%20Kamal%20Z&rft.date=2018-05-17&rft.volume=13&rft.issue=5&rft.spage=e0195675&rft.epage=e0195675&rft.pages=e0195675-e0195675&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0195675&rft_dat=%3Cgale_plos_%3EA539145455%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2040744631&rft_id=info:pmid/29771918&rft_galeid=A539145455&rft_doaj_id=oai_doaj_org_article_d09acc526b914fcba996ee7739333588&rfr_iscdi=true |