Choice of time horizon critical in estimating costs and effects of changes to HIV programmes

Uganda changed its antiretroviral therapy guidelines in 2014, increasing the CD4 threshold for antiretroviral therapy initiation from 350 cells/μl to 500 cells/μl. We investigate what effect this change in policy is likely to have on HIV incidence, morbidity, and programme costs, and estimate the co...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-05, Vol.13 (5), p.e0196480
Hauptverfasser: McCreesh, Nicky, Andrianakis, Ioannis, Nsubuga, Rebecca N, Strong, Mark, Vernon, Ian, McKinley, Trevelyan J, Oakley, Jeremy E, Goldstein, Michael, Hayes, Richard, White, Richard G
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 5
container_start_page e0196480
container_title PloS one
container_volume 13
creator McCreesh, Nicky
Andrianakis, Ioannis
Nsubuga, Rebecca N
Strong, Mark
Vernon, Ian
McKinley, Trevelyan J
Oakley, Jeremy E
Goldstein, Michael
Hayes, Richard
White, Richard G
description Uganda changed its antiretroviral therapy guidelines in 2014, increasing the CD4 threshold for antiretroviral therapy initiation from 350 cells/μl to 500 cells/μl. We investigate what effect this change in policy is likely to have on HIV incidence, morbidity, and programme costs, and estimate the cost-effectiveness of the change over different time horizons. We used a complex individual-based model of HIV transmission and antiretroviral therapy scale-up in Uganda. 100 model fits were generated by fitting the model to 51 demographic, sexual behaviour, and epidemiological calibration targets, varying 96 input parameters, using history matching with model emulation. An additional 19 cost and disability weight parameters were varied during the analysis of the model results. For each model fit, the model was run to 2030, with and without the change in threshold to 500 cells/μl. The change in threshold led to a 9.7% (90% plausible range: 4.3%-15.0%) reduction in incidence in 2030, and averted 278,944 (118,452-502,790) DALYs, at a total cost of $28M (-$142M to +$195M). The cost per disability adjusted life year (DALY) averted fell over time, from $3238 (-$125 to +$29,969) in 2014 to $100 (-$499 to +$785) in 2030. The change in threshold was cost-effective (cost
doi_str_mv 10.1371/journal.pone.0196480
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2039840827</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A538952545</galeid><doaj_id>oai_doaj_org_article_5ccdb6bc3a6a4e33a8439ccce26186fb</doaj_id><sourcerecordid>A538952545</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-339e3e661db733a9f908f94d0970929faa4343282a0dfb375d50b0de0bdf5e643</originalsourceid><addsrcrecordid>eNptkt-L1DAQx4so3rn6H4gGBPFl17T50eTl4FhOb-HAF_VJCGk6abO0yZp0Bf3rL-v2jl3xKSHzme_MdzJF8brEq5LU5cdt2Eevh9UueFjhUnIq8JPispSkWvIKk6cn94viRUpbjBkRnD8vLipZc0FZfVn8WPfBGUDBosmNgPoQ3Z_gkYluckYPyHkEKYf05HyHTEhTQtq3CKwFk-850fTad5DQFNDt5jvaxdBFPY6QXhbPrB4SvJrPRfHt083X9e3y7svnzfr6bmmYYNOSEAkEOC_bpiZESyuxsJK2WNZYVtJqTQkllag0bm1DatYy3OAWcNNaBpySRfH2qLsbQlLzYJLKxqWgWFR1JjZHog16q3Yx-4m_VdBO_X0IsVM6ZsMDKGZM2_DGEM01hdyPoEQaY6DipeC5_qK4mqvtmxFaA36KejgTPY9416su_FJMMkalyAIfZoEYfu7zdNXokoFh0B7C_tA3xXVdEYkz-u4f9P_uZqrT2YDzNuS65iCqrvOXS1YxyjL1_oTqQQ9Tn8Kwn1zw6RykR9DEkFIE--itxOqwew9NqMPuqXn3ctqb07k8Jj0sG7kHc73WZQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039840827</pqid></control><display><type>article</type><title>Choice of time horizon critical in estimating costs and effects of changes to HIV programmes</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>McCreesh, Nicky ; Andrianakis, Ioannis ; Nsubuga, Rebecca N ; Strong, Mark ; Vernon, Ian ; McKinley, Trevelyan J ; Oakley, Jeremy E ; Goldstein, Michael ; Hayes, Richard ; White, Richard G</creator><creatorcontrib>McCreesh, Nicky ; Andrianakis, Ioannis ; Nsubuga, Rebecca N ; Strong, Mark ; Vernon, Ian ; McKinley, Trevelyan J ; Oakley, Jeremy E ; Goldstein, Michael ; Hayes, Richard ; White, Richard G</creatorcontrib><description>Uganda changed its antiretroviral therapy guidelines in 2014, increasing the CD4 threshold for antiretroviral therapy initiation from 350 cells/μl to 500 cells/μl. We investigate what effect this change in policy is likely to have on HIV incidence, morbidity, and programme costs, and estimate the cost-effectiveness of the change over different time horizons. We used a complex individual-based model of HIV transmission and antiretroviral therapy scale-up in Uganda. 100 model fits were generated by fitting the model to 51 demographic, sexual behaviour, and epidemiological calibration targets, varying 96 input parameters, using history matching with model emulation. An additional 19 cost and disability weight parameters were varied during the analysis of the model results. For each model fit, the model was run to 2030, with and without the change in threshold to 500 cells/μl. The change in threshold led to a 9.7% (90% plausible range: 4.3%-15.0%) reduction in incidence in 2030, and averted 278,944 (118,452-502,790) DALYs, at a total cost of $28M (-$142M to +$195M). The cost per disability adjusted life year (DALY) averted fell over time, from $3238 (-$125 to +$29,969) in 2014 to $100 (-$499 to +$785) in 2030. The change in threshold was cost-effective (cost &lt;3×Uganda's per capita GDP per DALY averted) by 2018, and highly cost-effective (cost &lt;Uganda's per capita GDP per DALY averted) by 2022, for more than 50% of parameter sets. Model results suggest that the change in threshold is unlikely to have been cost-effective to date, but is likely to be highly cost-effective in Uganda by 2030. The time horizon needs to be chosen carefully when projecting intervention effects. Large amounts of uncertainty in our results demonstrates the need to comprehensively incorporate uncertainties in model parameterisation.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0196480</identifier><identifier>PMID: 29768457</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Acquired immune deficiency syndrome ; AIDS ; Analysis ; Anti-HIV Agents - economics ; Anti-HIV Agents - therapeutic use ; Antiretroviral agents ; Antiretroviral drugs ; Antiretroviral therapy ; Biology and Life Sciences ; Calibration ; CD4 antigen ; CD4 Lymphocyte Count ; Cost analysis ; Cost-Benefit Analysis ; Demographics ; Disease transmission ; Drug therapy ; Economic aspects ; Epidemiology ; Female ; Funding ; Health Policy - economics ; HIV ; HIV Infections - drug therapy ; HIV Infections - economics ; HIV Infections - epidemiology ; Human immunodeficiency virus ; Humans ; Hygiene ; Incidence ; Male ; Mathematical models ; Medical tests ; Medicine ; Medicine and Health Sciences ; Model matching ; Models, Economic ; Morbidity ; Mortality ; Parameters ; People and Places ; Population ; Quality-Adjusted Life Years ; Research and Analysis Methods ; Sexual behavior ; Sexually transmitted diseases ; Social Sciences ; Software ; STD ; Studies ; Therapy ; Time Factors ; Uganda - epidemiology ; Uncertainty</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0196480</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 McCreesh et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 McCreesh et al 2018 McCreesh et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-339e3e661db733a9f908f94d0970929faa4343282a0dfb375d50b0de0bdf5e643</citedby><cites>FETCH-LOGICAL-c585t-339e3e661db733a9f908f94d0970929faa4343282a0dfb375d50b0de0bdf5e643</cites><orcidid>0000-0003-1409-8531</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955498/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5955498/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29768457$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McCreesh, Nicky</creatorcontrib><creatorcontrib>Andrianakis, Ioannis</creatorcontrib><creatorcontrib>Nsubuga, Rebecca N</creatorcontrib><creatorcontrib>Strong, Mark</creatorcontrib><creatorcontrib>Vernon, Ian</creatorcontrib><creatorcontrib>McKinley, Trevelyan J</creatorcontrib><creatorcontrib>Oakley, Jeremy E</creatorcontrib><creatorcontrib>Goldstein, Michael</creatorcontrib><creatorcontrib>Hayes, Richard</creatorcontrib><creatorcontrib>White, Richard G</creatorcontrib><title>Choice of time horizon critical in estimating costs and effects of changes to HIV programmes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Uganda changed its antiretroviral therapy guidelines in 2014, increasing the CD4 threshold for antiretroviral therapy initiation from 350 cells/μl to 500 cells/μl. We investigate what effect this change in policy is likely to have on HIV incidence, morbidity, and programme costs, and estimate the cost-effectiveness of the change over different time horizons. We used a complex individual-based model of HIV transmission and antiretroviral therapy scale-up in Uganda. 100 model fits were generated by fitting the model to 51 demographic, sexual behaviour, and epidemiological calibration targets, varying 96 input parameters, using history matching with model emulation. An additional 19 cost and disability weight parameters were varied during the analysis of the model results. For each model fit, the model was run to 2030, with and without the change in threshold to 500 cells/μl. The change in threshold led to a 9.7% (90% plausible range: 4.3%-15.0%) reduction in incidence in 2030, and averted 278,944 (118,452-502,790) DALYs, at a total cost of $28M (-$142M to +$195M). The cost per disability adjusted life year (DALY) averted fell over time, from $3238 (-$125 to +$29,969) in 2014 to $100 (-$499 to +$785) in 2030. The change in threshold was cost-effective (cost &lt;3×Uganda's per capita GDP per DALY averted) by 2018, and highly cost-effective (cost &lt;Uganda's per capita GDP per DALY averted) by 2022, for more than 50% of parameter sets. Model results suggest that the change in threshold is unlikely to have been cost-effective to date, but is likely to be highly cost-effective in Uganda by 2030. The time horizon needs to be chosen carefully when projecting intervention effects. Large amounts of uncertainty in our results demonstrates the need to comprehensively incorporate uncertainties in model parameterisation.</description><subject>Acquired immune deficiency syndrome</subject><subject>AIDS</subject><subject>Analysis</subject><subject>Anti-HIV Agents - economics</subject><subject>Anti-HIV Agents - therapeutic use</subject><subject>Antiretroviral agents</subject><subject>Antiretroviral drugs</subject><subject>Antiretroviral therapy</subject><subject>Biology and Life Sciences</subject><subject>Calibration</subject><subject>CD4 antigen</subject><subject>CD4 Lymphocyte Count</subject><subject>Cost analysis</subject><subject>Cost-Benefit Analysis</subject><subject>Demographics</subject><subject>Disease transmission</subject><subject>Drug therapy</subject><subject>Economic aspects</subject><subject>Epidemiology</subject><subject>Female</subject><subject>Funding</subject><subject>Health Policy - economics</subject><subject>HIV</subject><subject>HIV Infections - drug therapy</subject><subject>HIV Infections - economics</subject><subject>HIV Infections - epidemiology</subject><subject>Human immunodeficiency virus</subject><subject>Humans</subject><subject>Hygiene</subject><subject>Incidence</subject><subject>Male</subject><subject>Mathematical models</subject><subject>Medical tests</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Model matching</subject><subject>Models, Economic</subject><subject>Morbidity</subject><subject>Mortality</subject><subject>Parameters</subject><subject>People and Places</subject><subject>Population</subject><subject>Quality-Adjusted Life Years</subject><subject>Research and Analysis Methods</subject><subject>Sexual behavior</subject><subject>Sexually transmitted diseases</subject><subject>Social Sciences</subject><subject>Software</subject><subject>STD</subject><subject>Studies</subject><subject>Therapy</subject><subject>Time Factors</subject><subject>Uganda - epidemiology</subject><subject>Uncertainty</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptkt-L1DAQx4so3rn6H4gGBPFl17T50eTl4FhOb-HAF_VJCGk6abO0yZp0Bf3rL-v2jl3xKSHzme_MdzJF8brEq5LU5cdt2Eevh9UueFjhUnIq8JPispSkWvIKk6cn94viRUpbjBkRnD8vLipZc0FZfVn8WPfBGUDBosmNgPoQ3Z_gkYluckYPyHkEKYf05HyHTEhTQtq3CKwFk-850fTad5DQFNDt5jvaxdBFPY6QXhbPrB4SvJrPRfHt083X9e3y7svnzfr6bmmYYNOSEAkEOC_bpiZESyuxsJK2WNZYVtJqTQkllag0bm1DatYy3OAWcNNaBpySRfH2qLsbQlLzYJLKxqWgWFR1JjZHog16q3Yx-4m_VdBO_X0IsVM6ZsMDKGZM2_DGEM01hdyPoEQaY6DipeC5_qK4mqvtmxFaA36KejgTPY9416su_FJMMkalyAIfZoEYfu7zdNXokoFh0B7C_tA3xXVdEYkz-u4f9P_uZqrT2YDzNuS65iCqrvOXS1YxyjL1_oTqQQ9Tn8Kwn1zw6RykR9DEkFIE--itxOqwew9NqMPuqXn3ctqb07k8Jj0sG7kHc73WZQ</recordid><startdate>20180516</startdate><enddate>20180516</enddate><creator>McCreesh, Nicky</creator><creator>Andrianakis, Ioannis</creator><creator>Nsubuga, Rebecca N</creator><creator>Strong, Mark</creator><creator>Vernon, Ian</creator><creator>McKinley, Trevelyan J</creator><creator>Oakley, Jeremy E</creator><creator>Goldstein, Michael</creator><creator>Hayes, Richard</creator><creator>White, Richard G</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PHGZM</scope><scope>PHGZT</scope><scope>PIMPY</scope><scope>PJZUB</scope><scope>PKEHL</scope><scope>PPXIY</scope><scope>PQEST</scope><scope>PQGLB</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1409-8531</orcidid></search><sort><creationdate>20180516</creationdate><title>Choice of time horizon critical in estimating costs and effects of changes to HIV programmes</title><author>McCreesh, Nicky ; Andrianakis, Ioannis ; Nsubuga, Rebecca N ; Strong, Mark ; Vernon, Ian ; McKinley, Trevelyan J ; Oakley, Jeremy E ; Goldstein, Michael ; Hayes, Richard ; White, Richard G</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-339e3e661db733a9f908f94d0970929faa4343282a0dfb375d50b0de0bdf5e643</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Acquired immune deficiency syndrome</topic><topic>AIDS</topic><topic>Analysis</topic><topic>Anti-HIV Agents - economics</topic><topic>Anti-HIV Agents - therapeutic use</topic><topic>Antiretroviral agents</topic><topic>Antiretroviral drugs</topic><topic>Antiretroviral therapy</topic><topic>Biology and Life Sciences</topic><topic>Calibration</topic><topic>CD4 antigen</topic><topic>CD4 Lymphocyte Count</topic><topic>Cost analysis</topic><topic>Cost-Benefit Analysis</topic><topic>Demographics</topic><topic>Disease transmission</topic><topic>Drug therapy</topic><topic>Economic aspects</topic><topic>Epidemiology</topic><topic>Female</topic><topic>Funding</topic><topic>Health Policy - economics</topic><topic>HIV</topic><topic>HIV Infections - drug therapy</topic><topic>HIV Infections - economics</topic><topic>HIV Infections - epidemiology</topic><topic>Human immunodeficiency virus</topic><topic>Humans</topic><topic>Hygiene</topic><topic>Incidence</topic><topic>Male</topic><topic>Mathematical models</topic><topic>Medical tests</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Model matching</topic><topic>Models, Economic</topic><topic>Morbidity</topic><topic>Mortality</topic><topic>Parameters</topic><topic>People and Places</topic><topic>Population</topic><topic>Quality-Adjusted Life Years</topic><topic>Research and Analysis Methods</topic><topic>Sexual behavior</topic><topic>Sexually transmitted diseases</topic><topic>Social Sciences</topic><topic>Software</topic><topic>STD</topic><topic>Studies</topic><topic>Therapy</topic><topic>Time Factors</topic><topic>Uganda - epidemiology</topic><topic>Uncertainty</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McCreesh, Nicky</creatorcontrib><creatorcontrib>Andrianakis, Ioannis</creatorcontrib><creatorcontrib>Nsubuga, Rebecca N</creatorcontrib><creatorcontrib>Strong, Mark</creatorcontrib><creatorcontrib>Vernon, Ian</creatorcontrib><creatorcontrib>McKinley, Trevelyan J</creatorcontrib><creatorcontrib>Oakley, Jeremy E</creatorcontrib><creatorcontrib>Goldstein, Michael</creatorcontrib><creatorcontrib>Hayes, Richard</creatorcontrib><creatorcontrib>White, Richard G</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest Central (New)</collection><collection>ProQuest One Academic (New)</collection><collection>Publicly Available Content Database</collection><collection>ProQuest Health &amp; Medical Research Collection</collection><collection>ProQuest One Academic Middle East (New)</collection><collection>ProQuest One Health &amp; Nursing</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Applied &amp; Life Sciences</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McCreesh, Nicky</au><au>Andrianakis, Ioannis</au><au>Nsubuga, Rebecca N</au><au>Strong, Mark</au><au>Vernon, Ian</au><au>McKinley, Trevelyan J</au><au>Oakley, Jeremy E</au><au>Goldstein, Michael</au><au>Hayes, Richard</au><au>White, Richard G</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Choice of time horizon critical in estimating costs and effects of changes to HIV programmes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-16</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0196480</spage><pages>e0196480-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Uganda changed its antiretroviral therapy guidelines in 2014, increasing the CD4 threshold for antiretroviral therapy initiation from 350 cells/μl to 500 cells/μl. We investigate what effect this change in policy is likely to have on HIV incidence, morbidity, and programme costs, and estimate the cost-effectiveness of the change over different time horizons. We used a complex individual-based model of HIV transmission and antiretroviral therapy scale-up in Uganda. 100 model fits were generated by fitting the model to 51 demographic, sexual behaviour, and epidemiological calibration targets, varying 96 input parameters, using history matching with model emulation. An additional 19 cost and disability weight parameters were varied during the analysis of the model results. For each model fit, the model was run to 2030, with and without the change in threshold to 500 cells/μl. The change in threshold led to a 9.7% (90% plausible range: 4.3%-15.0%) reduction in incidence in 2030, and averted 278,944 (118,452-502,790) DALYs, at a total cost of $28M (-$142M to +$195M). The cost per disability adjusted life year (DALY) averted fell over time, from $3238 (-$125 to +$29,969) in 2014 to $100 (-$499 to +$785) in 2030. The change in threshold was cost-effective (cost &lt;3×Uganda's per capita GDP per DALY averted) by 2018, and highly cost-effective (cost &lt;Uganda's per capita GDP per DALY averted) by 2022, for more than 50% of parameter sets. Model results suggest that the change in threshold is unlikely to have been cost-effective to date, but is likely to be highly cost-effective in Uganda by 2030. The time horizon needs to be chosen carefully when projecting intervention effects. Large amounts of uncertainty in our results demonstrates the need to comprehensively incorporate uncertainties in model parameterisation.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29768457</pmid><doi>10.1371/journal.pone.0196480</doi><orcidid>https://orcid.org/0000-0003-1409-8531</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-05, Vol.13 (5), p.e0196480
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2039840827
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Acquired immune deficiency syndrome
AIDS
Analysis
Anti-HIV Agents - economics
Anti-HIV Agents - therapeutic use
Antiretroviral agents
Antiretroviral drugs
Antiretroviral therapy
Biology and Life Sciences
Calibration
CD4 antigen
CD4 Lymphocyte Count
Cost analysis
Cost-Benefit Analysis
Demographics
Disease transmission
Drug therapy
Economic aspects
Epidemiology
Female
Funding
Health Policy - economics
HIV
HIV Infections - drug therapy
HIV Infections - economics
HIV Infections - epidemiology
Human immunodeficiency virus
Humans
Hygiene
Incidence
Male
Mathematical models
Medical tests
Medicine
Medicine and Health Sciences
Model matching
Models, Economic
Morbidity
Mortality
Parameters
People and Places
Population
Quality-Adjusted Life Years
Research and Analysis Methods
Sexual behavior
Sexually transmitted diseases
Social Sciences
Software
STD
Studies
Therapy
Time Factors
Uganda - epidemiology
Uncertainty
title Choice of time horizon critical in estimating costs and effects of changes to HIV programmes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-21T17%3A52%3A31IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Choice%20of%20time%20horizon%20critical%20in%20estimating%20costs%20and%20effects%20of%20changes%20to%20HIV%20programmes&rft.jtitle=PloS%20one&rft.au=McCreesh,%20Nicky&rft.date=2018-05-16&rft.volume=13&rft.issue=5&rft.spage=e0196480&rft.pages=e0196480-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0196480&rft_dat=%3Cgale_plos_%3EA538952545%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039840827&rft_id=info:pmid/29768457&rft_galeid=A538952545&rft_doaj_id=oai_doaj_org_article_5ccdb6bc3a6a4e33a8439ccce26186fb&rfr_iscdi=true