Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape
Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2018-04, Vol.14 (4), p.e1006085 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e1006085 |
container_title | PLoS computational biology |
container_volume | 14 |
creator | Pleydell, David R J Soubeyrand, Samuel Dallot, Sylvie Labonne, Gérard Chadœuf, Joël Jacquot, Emmanuel Thébaud, Gaël |
description | Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne. |
doi_str_mv | 10.1371/journal.pcbi.1006085 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2039773365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536809420</galeid><doaj_id>oai_doaj_org_article_d49249a3839e4e23b9d404f188db2027</doaj_id><sourcerecordid>A536809420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</originalsourceid><addsrcrecordid>eNqVkl1r2zAUhs3YWD-2fzA2w27WC2f6tnVTCKVdA2GDdbsWsiQnCo7lSXJY__3kxC1N6c3QhQ5Hz_tK5-hk2QcIZhCX8OvGDb6T7axXtZ1BABio6KvsFFKKixLT6vWT-CQ7C2EDQAo5e5udIF6CFFWn2d11iHYro3Vd7po8rk2ubeiND7Idoyg7ZcJ4JLtc9muri9r5zuQ764eQ25TMexnV-j5vZaeDkr15l71pZBvM-2k_z37fXP-6ui2WP74trubLQjFOY8EMVelxkEIMOFG8UaBRqtYlQgxrDiGirATAMEOSAMkGYFISzJNAclwhfJ59Ovj2rQti6kcQCGBelhgzmojFgdBObkTvU6X-XjhpxT7h_EpIH61qjdCEI8IlrjA3xCBcc00AaWBV6RoBVCavy-m2od4arUwXvWyPTI9POrsWK7cTlBOK9gYXB4P1M9ntfCnGHEAMEYb5Dib2y3SZd38GE6LY2qBMm3ps3LCvEeOqSu1J6Odn6MudmKiVTMXarnHpjWo0FXOKWZV-AI1esxeotLTZWuU609iUPxJcHAkSE83fuJJDCGJx9_M_2O_HLDmwyrsQvGkeGwaBGMf_oUgxjr-Yxj_JPj79o0fRw7zjf_Rk_Kw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039773365</pqid></control><display><type>article</type><title>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pleydell, David R J ; Soubeyrand, Samuel ; Dallot, Sylvie ; Labonne, Gérard ; Chadœuf, Joël ; Jacquot, Emmanuel ; Thébaud, Gaël</creator><contributor>Alizon, Samuel</contributor><creatorcontrib>Pleydell, David R J ; Soubeyrand, Samuel ; Dallot, Sylvie ; Labonne, Gérard ; Chadœuf, Joël ; Jacquot, Emmanuel ; Thébaud, Gaël ; Alizon, Samuel</creatorcontrib><description>Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006085</identifier><identifier>PMID: 29708968</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Algorithms ; Animals ; Aphidoidea ; Aphids - virology ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Complications ; Computational Biology ; Computer Simulation ; Disease ; Disease control ; Disease spread ; Dispersal ; Dispersion ; Epidemics ; Epidemiology ; Funding ; Host-virus relationships ; Infectious diseases ; Insect Vectors - virology ; Insects ; Life Sciences ; Mathematical models ; Medicine and Health Sciences ; Microbiology and Parasitology ; Models, Biological ; Observations ; Orchards ; Parameter estimation ; Pathogens ; Physical Sciences ; Phytopathology and phytopharmacy ; Plant Diseases - prevention & control ; Plant Diseases - statistics & numerical data ; Plant Diseases - virology ; Plant viruses ; Plum pox ; Plum Pox Virus - pathogenicity ; Polls & surveys ; Prunus - virology ; Software ; Supervision ; Surveillance ; Vegetal Biology ; Virology ; Viruses</subject><ispartof>PLoS computational biology, 2018-04, Vol.14 (4), p.e1006085</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pleydell DRJ, Soubeyrand S, Dallot S, Labonne G, Chadœuf J, Jacquot E, et al. (2018) Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape. PLoS Comput Biol 14(4): e1006085. https://doi.org/10.1371/journal.pcbi.1006085</rights><rights>Attribution</rights><rights>2018 Pleydell et al 2018 Pleydell et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pleydell DRJ, Soubeyrand S, Dallot S, Labonne G, Chadœuf J, Jacquot E, et al. (2018) Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape. PLoS Comput Biol 14(4): e1006085. https://doi.org/10.1371/journal.pcbi.1006085</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</citedby><cites>FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</cites><orcidid>0000-0002-6450-1475 ; 0000-0002-2987-4997 ; 0000-0003-2447-3067 ; 0000-0003-2556-6820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945227/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945227/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29708968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02624639$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Alizon, Samuel</contributor><creatorcontrib>Pleydell, David R J</creatorcontrib><creatorcontrib>Soubeyrand, Samuel</creatorcontrib><creatorcontrib>Dallot, Sylvie</creatorcontrib><creatorcontrib>Labonne, Gérard</creatorcontrib><creatorcontrib>Chadœuf, Joël</creatorcontrib><creatorcontrib>Jacquot, Emmanuel</creatorcontrib><creatorcontrib>Thébaud, Gaël</creatorcontrib><title>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Aphidoidea</subject><subject>Aphids - virology</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Complications</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Disease</subject><subject>Disease control</subject><subject>Disease spread</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Funding</subject><subject>Host-virus relationships</subject><subject>Infectious diseases</subject><subject>Insect Vectors - virology</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Models, Biological</subject><subject>Observations</subject><subject>Orchards</subject><subject>Parameter estimation</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant Diseases - prevention & control</subject><subject>Plant Diseases - statistics & numerical data</subject><subject>Plant Diseases - virology</subject><subject>Plant viruses</subject><subject>Plum pox</subject><subject>Plum Pox Virus - pathogenicity</subject><subject>Polls & surveys</subject><subject>Prunus - virology</subject><subject>Software</subject><subject>Supervision</subject><subject>Surveillance</subject><subject>Vegetal Biology</subject><subject>Virology</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1r2zAUhs3YWD-2fzA2w27WC2f6tnVTCKVdA2GDdbsWsiQnCo7lSXJY__3kxC1N6c3QhQ5Hz_tK5-hk2QcIZhCX8OvGDb6T7axXtZ1BABio6KvsFFKKixLT6vWT-CQ7C2EDQAo5e5udIF6CFFWn2d11iHYro3Vd7po8rk2ubeiND7Idoyg7ZcJ4JLtc9muri9r5zuQ764eQ25TMexnV-j5vZaeDkr15l71pZBvM-2k_z37fXP-6ui2WP74trubLQjFOY8EMVelxkEIMOFG8UaBRqtYlQgxrDiGirATAMEOSAMkGYFISzJNAclwhfJ59Ovj2rQti6kcQCGBelhgzmojFgdBObkTvU6X-XjhpxT7h_EpIH61qjdCEI8IlrjA3xCBcc00AaWBV6RoBVCavy-m2od4arUwXvWyPTI9POrsWK7cTlBOK9gYXB4P1M9ntfCnGHEAMEYb5Dib2y3SZd38GE6LY2qBMm3ps3LCvEeOqSu1J6Odn6MudmKiVTMXarnHpjWo0FXOKWZV-AI1esxeotLTZWuU609iUPxJcHAkSE83fuJJDCGJx9_M_2O_HLDmwyrsQvGkeGwaBGMf_oUgxjr-Yxj_JPj79o0fRw7zjf_Rk_Kw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pleydell, David R J</creator><creator>Soubeyrand, Samuel</creator><creator>Dallot, Sylvie</creator><creator>Labonne, Gérard</creator><creator>Chadœuf, Joël</creator><creator>Jacquot, Emmanuel</creator><creator>Thébaud, Gaël</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6450-1475</orcidid><orcidid>https://orcid.org/0000-0002-2987-4997</orcidid><orcidid>https://orcid.org/0000-0003-2447-3067</orcidid><orcidid>https://orcid.org/0000-0003-2556-6820</orcidid></search><sort><creationdate>20180401</creationdate><title>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</title><author>Pleydell, David R J ; Soubeyrand, Samuel ; Dallot, Sylvie ; Labonne, Gérard ; Chadœuf, Joël ; Jacquot, Emmanuel ; Thébaud, Gaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Aphidoidea</topic><topic>Aphids - virology</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Complications</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Disease</topic><topic>Disease control</topic><topic>Disease spread</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Funding</topic><topic>Host-virus relationships</topic><topic>Infectious diseases</topic><topic>Insect Vectors - virology</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Models, Biological</topic><topic>Observations</topic><topic>Orchards</topic><topic>Parameter estimation</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant Diseases - prevention & control</topic><topic>Plant Diseases - statistics & numerical data</topic><topic>Plant Diseases - virology</topic><topic>Plant viruses</topic><topic>Plum pox</topic><topic>Plum Pox Virus - pathogenicity</topic><topic>Polls & surveys</topic><topic>Prunus - virology</topic><topic>Software</topic><topic>Supervision</topic><topic>Surveillance</topic><topic>Vegetal Biology</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleydell, David R J</creatorcontrib><creatorcontrib>Soubeyrand, Samuel</creatorcontrib><creatorcontrib>Dallot, Sylvie</creatorcontrib><creatorcontrib>Labonne, Gérard</creatorcontrib><creatorcontrib>Chadœuf, Joël</creatorcontrib><creatorcontrib>Jacquot, Emmanuel</creatorcontrib><creatorcontrib>Thébaud, Gaël</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleydell, David R J</au><au>Soubeyrand, Samuel</au><au>Dallot, Sylvie</au><au>Labonne, Gérard</au><au>Chadœuf, Joël</au><au>Jacquot, Emmanuel</au><au>Thébaud, Gaël</au><au>Alizon, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>e1006085</spage><pages>e1006085-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29708968</pmid><doi>10.1371/journal.pcbi.1006085</doi><orcidid>https://orcid.org/0000-0002-6450-1475</orcidid><orcidid>https://orcid.org/0000-0002-2987-4997</orcidid><orcidid>https://orcid.org/0000-0003-2447-3067</orcidid><orcidid>https://orcid.org/0000-0003-2556-6820</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2018-04, Vol.14 (4), p.e1006085 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2039773365 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Agriculture Algorithms Animals Aphidoidea Aphids - virology Bayes Theorem Bayesian analysis Biology and Life Sciences Complications Computational Biology Computer Simulation Disease Disease control Disease spread Dispersal Dispersion Epidemics Epidemiology Funding Host-virus relationships Infectious diseases Insect Vectors - virology Insects Life Sciences Mathematical models Medicine and Health Sciences Microbiology and Parasitology Models, Biological Observations Orchards Parameter estimation Pathogens Physical Sciences Phytopathology and phytopharmacy Plant Diseases - prevention & control Plant Diseases - statistics & numerical data Plant Diseases - virology Plant viruses Plum pox Plum Pox Virus - pathogenicity Polls & surveys Prunus - virology Software Supervision Surveillance Vegetal Biology Virology Viruses |
title | Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20dispersal%20distances%20of%20an%20aphid-borne%20virus%20in%20a%20patchy%20landscape&rft.jtitle=PLoS%20computational%20biology&rft.au=Pleydell,%20David%20R%20J&rft.date=2018-04-01&rft.volume=14&rft.issue=4&rft.spage=e1006085&rft.pages=e1006085-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006085&rft_dat=%3Cgale_plos_%3EA536809420%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039773365&rft_id=info:pmid/29708968&rft_galeid=A536809420&rft_doaj_id=oai_doaj_org_article_d49249a3839e4e23b9d404f188db2027&rfr_iscdi=true |