Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape

Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS computational biology 2018-04, Vol.14 (4), p.e1006085
Hauptverfasser: Pleydell, David R J, Soubeyrand, Samuel, Dallot, Sylvie, Labonne, Gérard, Chadœuf, Joël, Jacquot, Emmanuel, Thébaud, Gaël
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 4
container_start_page e1006085
container_title PLoS computational biology
container_volume 14
creator Pleydell, David R J
Soubeyrand, Samuel
Dallot, Sylvie
Labonne, Gérard
Chadœuf, Joël
Jacquot, Emmanuel
Thébaud, Gaël
description Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.
doi_str_mv 10.1371/journal.pcbi.1006085
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2039773365</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536809420</galeid><doaj_id>oai_doaj_org_article_d49249a3839e4e23b9d404f188db2027</doaj_id><sourcerecordid>A536809420</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</originalsourceid><addsrcrecordid>eNqVkl1r2zAUhs3YWD-2fzA2w27WC2f6tnVTCKVdA2GDdbsWsiQnCo7lSXJY__3kxC1N6c3QhQ5Hz_tK5-hk2QcIZhCX8OvGDb6T7axXtZ1BABio6KvsFFKKixLT6vWT-CQ7C2EDQAo5e5udIF6CFFWn2d11iHYro3Vd7po8rk2ubeiND7Idoyg7ZcJ4JLtc9muri9r5zuQ764eQ25TMexnV-j5vZaeDkr15l71pZBvM-2k_z37fXP-6ui2WP74trubLQjFOY8EMVelxkEIMOFG8UaBRqtYlQgxrDiGirATAMEOSAMkGYFISzJNAclwhfJ59Ovj2rQti6kcQCGBelhgzmojFgdBObkTvU6X-XjhpxT7h_EpIH61qjdCEI8IlrjA3xCBcc00AaWBV6RoBVCavy-m2od4arUwXvWyPTI9POrsWK7cTlBOK9gYXB4P1M9ntfCnGHEAMEYb5Dib2y3SZd38GE6LY2qBMm3ps3LCvEeOqSu1J6Odn6MudmKiVTMXarnHpjWo0FXOKWZV-AI1esxeotLTZWuU609iUPxJcHAkSE83fuJJDCGJx9_M_2O_HLDmwyrsQvGkeGwaBGMf_oUgxjr-Yxj_JPj79o0fRw7zjf_Rk_Kw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2039773365</pqid></control><display><type>article</type><title>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Pleydell, David R J ; Soubeyrand, Samuel ; Dallot, Sylvie ; Labonne, Gérard ; Chadœuf, Joël ; Jacquot, Emmanuel ; Thébaud, Gaël</creator><contributor>Alizon, Samuel</contributor><creatorcontrib>Pleydell, David R J ; Soubeyrand, Samuel ; Dallot, Sylvie ; Labonne, Gérard ; Chadœuf, Joël ; Jacquot, Emmanuel ; Thébaud, Gaël ; Alizon, Samuel</creatorcontrib><description>Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1006085</identifier><identifier>PMID: 29708968</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Algorithms ; Animals ; Aphidoidea ; Aphids - virology ; Bayes Theorem ; Bayesian analysis ; Biology and Life Sciences ; Complications ; Computational Biology ; Computer Simulation ; Disease ; Disease control ; Disease spread ; Dispersal ; Dispersion ; Epidemics ; Epidemiology ; Funding ; Host-virus relationships ; Infectious diseases ; Insect Vectors - virology ; Insects ; Life Sciences ; Mathematical models ; Medicine and Health Sciences ; Microbiology and Parasitology ; Models, Biological ; Observations ; Orchards ; Parameter estimation ; Pathogens ; Physical Sciences ; Phytopathology and phytopharmacy ; Plant Diseases - prevention &amp; control ; Plant Diseases - statistics &amp; numerical data ; Plant Diseases - virology ; Plant viruses ; Plum pox ; Plum Pox Virus - pathogenicity ; Polls &amp; surveys ; Prunus - virology ; Software ; Supervision ; Surveillance ; Vegetal Biology ; Virology ; Viruses</subject><ispartof>PLoS computational biology, 2018-04, Vol.14 (4), p.e1006085</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pleydell DRJ, Soubeyrand S, Dallot S, Labonne G, Chadœuf J, Jacquot E, et al. (2018) Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape. PLoS Comput Biol 14(4): e1006085. https://doi.org/10.1371/journal.pcbi.1006085</rights><rights>Attribution</rights><rights>2018 Pleydell et al 2018 Pleydell et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Pleydell DRJ, Soubeyrand S, Dallot S, Labonne G, Chadœuf J, Jacquot E, et al. (2018) Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape. PLoS Comput Biol 14(4): e1006085. https://doi.org/10.1371/journal.pcbi.1006085</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</citedby><cites>FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</cites><orcidid>0000-0002-6450-1475 ; 0000-0002-2987-4997 ; 0000-0003-2447-3067 ; 0000-0003-2556-6820</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945227/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5945227/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53770,53772,79347,79348</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29708968$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.inrae.fr/hal-02624639$$DView record in HAL$$Hfree_for_read</backlink></links><search><contributor>Alizon, Samuel</contributor><creatorcontrib>Pleydell, David R J</creatorcontrib><creatorcontrib>Soubeyrand, Samuel</creatorcontrib><creatorcontrib>Dallot, Sylvie</creatorcontrib><creatorcontrib>Labonne, Gérard</creatorcontrib><creatorcontrib>Chadœuf, Joël</creatorcontrib><creatorcontrib>Jacquot, Emmanuel</creatorcontrib><creatorcontrib>Thébaud, Gaël</creatorcontrib><title>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.</description><subject>Agriculture</subject><subject>Algorithms</subject><subject>Animals</subject><subject>Aphidoidea</subject><subject>Aphids - virology</subject><subject>Bayes Theorem</subject><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Complications</subject><subject>Computational Biology</subject><subject>Computer Simulation</subject><subject>Disease</subject><subject>Disease control</subject><subject>Disease spread</subject><subject>Dispersal</subject><subject>Dispersion</subject><subject>Epidemics</subject><subject>Epidemiology</subject><subject>Funding</subject><subject>Host-virus relationships</subject><subject>Infectious diseases</subject><subject>Insect Vectors - virology</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Microbiology and Parasitology</subject><subject>Models, Biological</subject><subject>Observations</subject><subject>Orchards</subject><subject>Parameter estimation</subject><subject>Pathogens</subject><subject>Physical Sciences</subject><subject>Phytopathology and phytopharmacy</subject><subject>Plant Diseases - prevention &amp; control</subject><subject>Plant Diseases - statistics &amp; numerical data</subject><subject>Plant Diseases - virology</subject><subject>Plant viruses</subject><subject>Plum pox</subject><subject>Plum Pox Virus - pathogenicity</subject><subject>Polls &amp; surveys</subject><subject>Prunus - virology</subject><subject>Software</subject><subject>Supervision</subject><subject>Surveillance</subject><subject>Vegetal Biology</subject><subject>Virology</subject><subject>Viruses</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1r2zAUhs3YWD-2fzA2w27WC2f6tnVTCKVdA2GDdbsWsiQnCo7lSXJY__3kxC1N6c3QhQ5Hz_tK5-hk2QcIZhCX8OvGDb6T7axXtZ1BABio6KvsFFKKixLT6vWT-CQ7C2EDQAo5e5udIF6CFFWn2d11iHYro3Vd7po8rk2ubeiND7Idoyg7ZcJ4JLtc9muri9r5zuQ764eQ25TMexnV-j5vZaeDkr15l71pZBvM-2k_z37fXP-6ui2WP74trubLQjFOY8EMVelxkEIMOFG8UaBRqtYlQgxrDiGirATAMEOSAMkGYFISzJNAclwhfJ59Ovj2rQti6kcQCGBelhgzmojFgdBObkTvU6X-XjhpxT7h_EpIH61qjdCEI8IlrjA3xCBcc00AaWBV6RoBVCavy-m2od4arUwXvWyPTI9POrsWK7cTlBOK9gYXB4P1M9ntfCnGHEAMEYb5Dib2y3SZd38GE6LY2qBMm3ps3LCvEeOqSu1J6Odn6MudmKiVTMXarnHpjWo0FXOKWZV-AI1esxeotLTZWuU609iUPxJcHAkSE83fuJJDCGJx9_M_2O_HLDmwyrsQvGkeGwaBGMf_oUgxjr-Yxj_JPj79o0fRw7zjf_Rk_Kw</recordid><startdate>20180401</startdate><enddate>20180401</enddate><creator>Pleydell, David R J</creator><creator>Soubeyrand, Samuel</creator><creator>Dallot, Sylvie</creator><creator>Labonne, Gérard</creator><creator>Chadœuf, Joël</creator><creator>Jacquot, Emmanuel</creator><creator>Thébaud, Gaël</creator><general>Public Library of Science</general><general>PLOS</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>1XC</scope><scope>VOOES</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6450-1475</orcidid><orcidid>https://orcid.org/0000-0002-2987-4997</orcidid><orcidid>https://orcid.org/0000-0003-2447-3067</orcidid><orcidid>https://orcid.org/0000-0003-2556-6820</orcidid></search><sort><creationdate>20180401</creationdate><title>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</title><author>Pleydell, David R J ; Soubeyrand, Samuel ; Dallot, Sylvie ; Labonne, Gérard ; Chadœuf, Joël ; Jacquot, Emmanuel ; Thébaud, Gaël</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-6e5c7351513094c9fc0fccbd72263d911256700e6e4c692af0347439151a93823</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Algorithms</topic><topic>Animals</topic><topic>Aphidoidea</topic><topic>Aphids - virology</topic><topic>Bayes Theorem</topic><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Complications</topic><topic>Computational Biology</topic><topic>Computer Simulation</topic><topic>Disease</topic><topic>Disease control</topic><topic>Disease spread</topic><topic>Dispersal</topic><topic>Dispersion</topic><topic>Epidemics</topic><topic>Epidemiology</topic><topic>Funding</topic><topic>Host-virus relationships</topic><topic>Infectious diseases</topic><topic>Insect Vectors - virology</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Microbiology and Parasitology</topic><topic>Models, Biological</topic><topic>Observations</topic><topic>Orchards</topic><topic>Parameter estimation</topic><topic>Pathogens</topic><topic>Physical Sciences</topic><topic>Phytopathology and phytopharmacy</topic><topic>Plant Diseases - prevention &amp; control</topic><topic>Plant Diseases - statistics &amp; numerical data</topic><topic>Plant Diseases - virology</topic><topic>Plant viruses</topic><topic>Plum pox</topic><topic>Plum Pox Virus - pathogenicity</topic><topic>Polls &amp; surveys</topic><topic>Prunus - virology</topic><topic>Software</topic><topic>Supervision</topic><topic>Surveillance</topic><topic>Vegetal Biology</topic><topic>Virology</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pleydell, David R J</creatorcontrib><creatorcontrib>Soubeyrand, Samuel</creatorcontrib><creatorcontrib>Dallot, Sylvie</creatorcontrib><creatorcontrib>Labonne, Gérard</creatorcontrib><creatorcontrib>Chadœuf, Joël</creatorcontrib><creatorcontrib>Jacquot, Emmanuel</creatorcontrib><creatorcontrib>Thébaud, Gaël</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>Hyper Article en Ligne (HAL) (Open Access)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pleydell, David R J</au><au>Soubeyrand, Samuel</au><au>Dallot, Sylvie</au><au>Labonne, Gérard</au><au>Chadœuf, Joël</au><au>Jacquot, Emmanuel</au><au>Thébaud, Gaël</au><au>Alizon, Samuel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-04-01</date><risdate>2018</risdate><volume>14</volume><issue>4</issue><spage>e1006085</spage><pages>e1006085-</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>Characterising the spatio-temporal dynamics of pathogens in natura is key to ensuring their efficient prevention and control. However, it is notoriously difficult to estimate dispersal parameters at scales that are relevant to real epidemics. Epidemiological surveys can provide informative data, but parameter estimation can be hampered when the timing of the epidemiological events is uncertain, and in the presence of interactions between disease spread, surveillance, and control. Further complications arise from imperfect detection of disease and from the huge number of data on individual hosts arising from landscape-level surveys. Here, we present a Bayesian framework that overcomes these barriers by integrating over associated uncertainties in a model explicitly combining the processes of disease dispersal, surveillance and control. Using a novel computationally efficient approach to account for patch geometry, we demonstrate that disease dispersal distances can be estimated accurately in a patchy (i.e. fragmented) landscape when disease control is ongoing. Applying this model to data for an aphid-borne virus (Plum pox virus) surveyed for 15 years in 605 orchards, we obtain the first estimate of the distribution of flight distances of infectious aphids at the landscape scale. About 50% of aphid flights terminate beyond 90 m, which implies that most infectious aphids leaving a tree land outside the bounds of a 1-ha orchard. Moreover, long-distance flights are not rare-10% of flights exceed 1 km. By their impact on our quantitative understanding of winged aphid dispersal, these results can inform the design of management strategies for plant viruses, which are mainly aphid-borne.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29708968</pmid><doi>10.1371/journal.pcbi.1006085</doi><orcidid>https://orcid.org/0000-0002-6450-1475</orcidid><orcidid>https://orcid.org/0000-0002-2987-4997</orcidid><orcidid>https://orcid.org/0000-0003-2447-3067</orcidid><orcidid>https://orcid.org/0000-0003-2556-6820</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7358
ispartof PLoS computational biology, 2018-04, Vol.14 (4), p.e1006085
issn 1553-7358
1553-734X
1553-7358
language eng
recordid cdi_plos_journals_2039773365
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Agriculture
Algorithms
Animals
Aphidoidea
Aphids - virology
Bayes Theorem
Bayesian analysis
Biology and Life Sciences
Complications
Computational Biology
Computer Simulation
Disease
Disease control
Disease spread
Dispersal
Dispersion
Epidemics
Epidemiology
Funding
Host-virus relationships
Infectious diseases
Insect Vectors - virology
Insects
Life Sciences
Mathematical models
Medicine and Health Sciences
Microbiology and Parasitology
Models, Biological
Observations
Orchards
Parameter estimation
Pathogens
Physical Sciences
Phytopathology and phytopharmacy
Plant Diseases - prevention & control
Plant Diseases - statistics & numerical data
Plant Diseases - virology
Plant viruses
Plum pox
Plum Pox Virus - pathogenicity
Polls & surveys
Prunus - virology
Software
Supervision
Surveillance
Vegetal Biology
Virology
Viruses
title Estimation of the dispersal distances of an aphid-borne virus in a patchy landscape
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T13%3A22%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Estimation%20of%20the%20dispersal%20distances%20of%20an%20aphid-borne%20virus%20in%20a%20patchy%20landscape&rft.jtitle=PLoS%20computational%20biology&rft.au=Pleydell,%20David%20R%20J&rft.date=2018-04-01&rft.volume=14&rft.issue=4&rft.spage=e1006085&rft.pages=e1006085-&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1006085&rft_dat=%3Cgale_plos_%3EA536809420%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2039773365&rft_id=info:pmid/29708968&rft_galeid=A536809420&rft_doaj_id=oai_doaj_org_article_d49249a3839e4e23b9d404f188db2027&rfr_iscdi=true