Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography
To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localizat...
Gespeichert in:
Veröffentlicht in: | PloS one 2013-10, Vol.8 (10), p.e76851-e76851 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e76851 |
---|---|
container_issue | 10 |
container_start_page | e76851 |
container_title | PloS one |
container_volume | 8 |
creator | Scharff-Poulsen, Peter Pedersen, Per Amstrup |
description | To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality eukaryotic membrane proteins for functional and structural analysis. |
doi_str_mv | 10.1371/journal.pone.0076851 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2037238205</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A478425763</galeid><doaj_id>oai_doaj_org_article_df5370a61a6c4eb19a9c18f6ebc65fb6</doaj_id><sourcerecordid>A478425763</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-e6cf386be094db042e348e355a75e712f3392215ef8e9ed7eea4f6c517cae4c03</originalsourceid><addsrcrecordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7u1Dpbsm0IIPQQCgabtrRjL412lWsuR5KX7Tn3IyrubkC25KAbZHn3zD_NLk2UvSTEnTJIP1270Pdj54HqcF4UUVUkeZcekZnQmaMEe3_s-yp6FcF0UJauEeJodUU4oL-v6OPtzBVovwbvVRmPINXpcm2AAZw0EbPPBQuycX-VpyT0MJoW8a0cdjetz6Nsc12BH2P66LsfxF_iNi0bn_Ri9wT7m0UMfBucj-rBN2QY0DtGlwCTcGKeXuDIabB7i2BrcgdpvQgRr3SKVXm6eZ086sAFf7N8n2Y_Pn76ffZ1dXH45Pzu9mGlR0zhDobvUaINFzdum4BQZr5CVJcgSJaEdYzWlpMSuwhpbiQi8E7okUgNyXbCT7PVOd7AuqL3RQSUjJWUVTTaeZOc7onVwrQZvVqlr5cCobcD5hQKfTLCo2q5ksgBBQGiODamh1qTqBDZalF0jktbHfbWxWWGrk2Ue7IHo4U5vlmrh1orJupBMJoF3ewHvbkYMUa1Mstda6NGNQRHOGadCygl98w_6cHd7agGpAdN3LtXVk6g65bLitJSCJWr-AJWedjrJdCs7k-IHCe8PEhIT8XdcwBiCOr_69v_s5c9D9u09dolg4zI4O053MhyCfAdq70Lw2N2ZTAo1DdWtG2oaKrUfqpT26v4B3SXdThH7C3phIy0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2037238205</pqid></control><display><type>article</type><title>Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Scharff-Poulsen, Peter ; Pedersen, Per Amstrup</creator><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Scharff-Poulsen, Peter ; Pedersen, Per Amstrup ; Uversky, Vladimir N.</creatorcontrib><description>To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality eukaryotic membrane proteins for functional and structural analysis.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0076851</identifier><identifier>PMID: 24124599</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Affinity ; Affinity chromatography ; Amino acids ; Baking yeast ; Biological Transport ; Biology ; Cancer ; Cell culture ; Chromatography ; Chromatography, Affinity - methods ; Crystallography ; Detergents ; Detergents - pharmacology ; Fluorescence ; Galactose ; Gene Expression ; Gene Order ; Genes ; Genetic Vectors - genetics ; Green fluorescent protein ; Green Fluorescent Proteins - genetics ; Green Fluorescent Proteins - metabolism ; Humans ; Localization ; Membrane proteins ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Membranes ; Nutrients ; Plasma ; Protease ; Proteases ; Protein purification ; Protein Stability - drug effects ; Protein Transport ; Proteinase ; Proteins ; Proteolysis ; Quality control ; Quality management ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - isolation & purification ; Recombinant Fusion Proteins - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Signal transduction ; Size exclusion chromatography ; Solubilization ; Structural analysis ; Structure-function relationships ; Substrates ; Tobacco ; Viruses ; Yeast</subject><ispartof>PloS one, 2013-10, Vol.8 (10), p.e76851-e76851</ispartof><rights>COPYRIGHT 2013 Public Library of Science</rights><rights>2013 Scharff-Poulsen, Pedersen. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2013 Scharff-Poulsen, Pedersen 2013 Scharff-Poulsen, Pedersen</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-e6cf386be094db042e348e355a75e712f3392215ef8e9ed7eea4f6c517cae4c03</citedby><cites>FETCH-LOGICAL-c692t-e6cf386be094db042e348e355a75e712f3392215ef8e9ed7eea4f6c517cae4c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790737/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3790737/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/24124599$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Uversky, Vladimir N.</contributor><creatorcontrib>Scharff-Poulsen, Peter</creatorcontrib><creatorcontrib>Pedersen, Per Amstrup</creatorcontrib><title>Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality eukaryotic membrane proteins for functional and structural analysis.</description><subject>Affinity</subject><subject>Affinity chromatography</subject><subject>Amino acids</subject><subject>Baking yeast</subject><subject>Biological Transport</subject><subject>Biology</subject><subject>Cancer</subject><subject>Cell culture</subject><subject>Chromatography</subject><subject>Chromatography, Affinity - methods</subject><subject>Crystallography</subject><subject>Detergents</subject><subject>Detergents - pharmacology</subject><subject>Fluorescence</subject><subject>Galactose</subject><subject>Gene Expression</subject><subject>Gene Order</subject><subject>Genes</subject><subject>Genetic Vectors - genetics</subject><subject>Green fluorescent protein</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Green Fluorescent Proteins - metabolism</subject><subject>Humans</subject><subject>Localization</subject><subject>Membrane proteins</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Membranes</subject><subject>Nutrients</subject><subject>Plasma</subject><subject>Protease</subject><subject>Proteases</subject><subject>Protein purification</subject><subject>Protein Stability - drug effects</subject><subject>Protein Transport</subject><subject>Proteinase</subject><subject>Proteins</subject><subject>Proteolysis</subject><subject>Quality control</subject><subject>Quality management</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - isolation & purification</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Signal transduction</subject><subject>Size exclusion chromatography</subject><subject>Solubilization</subject><subject>Structural analysis</subject><subject>Structure-function relationships</subject><subject>Substrates</subject><subject>Tobacco</subject><subject>Viruses</subject><subject>Yeast</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2013</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9tq3DAQhk1padK0b1BaQ6G0F7u1Dpbsm0IIPQQCgabtrRjL412lWsuR5KX7Tn3IyrubkC25KAbZHn3zD_NLk2UvSTEnTJIP1270Pdj54HqcF4UUVUkeZcekZnQmaMEe3_s-yp6FcF0UJauEeJodUU4oL-v6OPtzBVovwbvVRmPINXpcm2AAZw0EbPPBQuycX-VpyT0MJoW8a0cdjetz6Nsc12BH2P66LsfxF_iNi0bn_Ri9wT7m0UMfBucj-rBN2QY0DtGlwCTcGKeXuDIabB7i2BrcgdpvQgRr3SKVXm6eZ086sAFf7N8n2Y_Pn76ffZ1dXH45Pzu9mGlR0zhDobvUaINFzdum4BQZr5CVJcgSJaEdYzWlpMSuwhpbiQi8E7okUgNyXbCT7PVOd7AuqL3RQSUjJWUVTTaeZOc7onVwrQZvVqlr5cCobcD5hQKfTLCo2q5ksgBBQGiODamh1qTqBDZalF0jktbHfbWxWWGrk2Ue7IHo4U5vlmrh1orJupBMJoF3ewHvbkYMUa1Mstda6NGNQRHOGadCygl98w_6cHd7agGpAdN3LtXVk6g65bLitJSCJWr-AJWedjrJdCs7k-IHCe8PEhIT8XdcwBiCOr_69v_s5c9D9u09dolg4zI4O053MhyCfAdq70Lw2N2ZTAo1DdWtG2oaKrUfqpT26v4B3SXdThH7C3phIy0</recordid><startdate>20131004</startdate><enddate>20131004</enddate><creator>Scharff-Poulsen, Peter</creator><creator>Pedersen, Per Amstrup</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20131004</creationdate><title>Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography</title><author>Scharff-Poulsen, Peter ; Pedersen, Per Amstrup</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-e6cf386be094db042e348e355a75e712f3392215ef8e9ed7eea4f6c517cae4c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2013</creationdate><topic>Affinity</topic><topic>Affinity chromatography</topic><topic>Amino acids</topic><topic>Baking yeast</topic><topic>Biological Transport</topic><topic>Biology</topic><topic>Cancer</topic><topic>Cell culture</topic><topic>Chromatography</topic><topic>Chromatography, Affinity - methods</topic><topic>Crystallography</topic><topic>Detergents</topic><topic>Detergents - pharmacology</topic><topic>Fluorescence</topic><topic>Galactose</topic><topic>Gene Expression</topic><topic>Gene Order</topic><topic>Genes</topic><topic>Genetic Vectors - genetics</topic><topic>Green fluorescent protein</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Green Fluorescent Proteins - metabolism</topic><topic>Humans</topic><topic>Localization</topic><topic>Membrane proteins</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Membranes</topic><topic>Nutrients</topic><topic>Plasma</topic><topic>Protease</topic><topic>Proteases</topic><topic>Protein purification</topic><topic>Protein Stability - drug effects</topic><topic>Protein Transport</topic><topic>Proteinase</topic><topic>Proteins</topic><topic>Proteolysis</topic><topic>Quality control</topic><topic>Quality management</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - isolation & purification</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Signal transduction</topic><topic>Size exclusion chromatography</topic><topic>Solubilization</topic><topic>Structural analysis</topic><topic>Structure-function relationships</topic><topic>Substrates</topic><topic>Tobacco</topic><topic>Viruses</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Scharff-Poulsen, Peter</creatorcontrib><creatorcontrib>Pedersen, Per Amstrup</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Proquest Nursing & Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Scharff-Poulsen, Peter</au><au>Pedersen, Per Amstrup</au><au>Uversky, Vladimir N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2013-10-04</date><risdate>2013</risdate><volume>8</volume><issue>10</issue><spage>e76851</spage><epage>e76851</epage><pages>e76851-e76851</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>To produce large quantities of high quality eukaryotic membrane proteins in Saccharomyces cerevisiae, we modified a high-copy vector to express membrane proteins C-terminally-fused to a Tobacco Etch Virus (TEV) protease detachable Green Fluorescent Protein (GFP)-8His tag, which facilitates localization, quantification, quality control, and purification. Using this expression system we examined the production of a human glucose transceptor and 11 nutrient transporters and transceptors from S. cerevisiae that have not previously been overexpressed in S. cerevisiae and purified. Whole-cell GFP-fluorescence showed that induction of GFP-fusion synthesis from a galactose-inducible promoter at 15°C resulted in stable accumulation of the fusions in the plasma membrane and in intracellular membranes. Expression levels of the 12 fusions estimated by GFP-fluorescence were in the range of 0.4 mg to 1.7 mg transporter pr. liter cell culture. A detergent screen showed that n-dodecyl-ß-D-maltopyranoside (DDM) is acceptable for solubilization of the membrane-integrated fusions. Extracts of solubilized membranes were prepared with this detergent and used for purifications by Ni-NTA affinity chromatography, which yielded partially purified full-length fusions. Most of the fusions were readily cleaved at a TEV protease site between the membrane protein and the GFP-8His tag. Using the yeast oligopeptide transporter Ptr2 as an example, we further demonstrate that almost pure transporters, free of the GFP-8His tag, can be achieved by TEV protease cleavage followed by reverse immobilized metal-affinity chromatography. The quality of the GFP-fusions was analysed by fluorescence size-exclusion chromatography. Membranes solubilized in DDM resulted in preparations containing aggregated fusions. However, 9 of the fusions solubilized in DDM in presence of cholesteryl hemisuccinate and specific substrates, yielded monodisperse preparations with only minor amounts of aggregated membrane proteins. In conclusion, we developed a new effective S. cerevisiae expression system that may be used for production of high-quality eukaryotic membrane proteins for functional and structural analysis.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>24124599</pmid><doi>10.1371/journal.pone.0076851</doi><tpages>e76851</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2013-10, Vol.8 (10), p.e76851-e76851 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2037238205 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS); EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Affinity Affinity chromatography Amino acids Baking yeast Biological Transport Biology Cancer Cell culture Chromatography Chromatography, Affinity - methods Crystallography Detergents Detergents - pharmacology Fluorescence Galactose Gene Expression Gene Order Genes Genetic Vectors - genetics Green fluorescent protein Green Fluorescent Proteins - genetics Green Fluorescent Proteins - metabolism Humans Localization Membrane proteins Membrane Transport Proteins - chemistry Membrane Transport Proteins - genetics Membrane Transport Proteins - metabolism Membranes Nutrients Plasma Protease Proteases Protein purification Protein Stability - drug effects Protein Transport Proteinase Proteins Proteolysis Quality control Quality management Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - isolation & purification Recombinant Fusion Proteins - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Signal transduction Size exclusion chromatography Solubilization Structural analysis Structure-function relationships Substrates Tobacco Viruses Yeast |
title | Saccharomyces cerevisiae-based platform for rapid production and evaluation of eukaryotic nutrient transporters and transceptors for biochemical studies and crystallography |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T01%3A06%3A43IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Saccharomyces%20cerevisiae-based%20platform%20for%20rapid%20production%20and%20evaluation%20of%20eukaryotic%20nutrient%20transporters%20and%20transceptors%20for%20biochemical%20studies%20and%20crystallography&rft.jtitle=PloS%20one&rft.au=Scharff-Poulsen,%20Peter&rft.date=2013-10-04&rft.volume=8&rft.issue=10&rft.spage=e76851&rft.epage=e76851&rft.pages=e76851-e76851&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0076851&rft_dat=%3Cgale_plos_%3EA478425763%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2037238205&rft_id=info:pmid/24124599&rft_galeid=A478425763&rft_doaj_id=oai_doaj_org_article_df5370a61a6c4eb19a9c18f6ebc65fb6&rfr_iscdi=true |