Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators
Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-05, Vol.13 (5), p.e0196355-e0196355 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
Schreiben Sie den ersten Kommentar!