Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators
Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-05, Vol.13 (5), p.e0196355-e0196355 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0196355 |
---|---|
container_issue | 5 |
container_start_page | e0196355 |
container_title | PloS one |
container_volume | 13 |
creator | Blomqvist, Björn R H Mann, Richard P Sumpter, David J T |
description | Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We search for the 'best' explicit functions by fitting data using Bayesian linear regression on a vast number of models and then comparing their Bayes factors. The model with the highest Bayes factor, having the best trade-off between explanatory power and interpretability, is chosen as the 'best' model. To be able to compare a vast number of models, we use conjugate priors, resulting in fast computation times. We check the robustness of our approach by comparison with more prediction oriented approaches such as model averaging and neural networks. Our modelling approach is illustrated using the classical example of how democracy and economic growth relate to each other. We find that the best dynamical model for democracy suggests that long term democratic increase is only possible if the economic situation gets better. No robust model explaining economic development using these two variables was found. |
doi_str_mv | 10.1371/journal.pone.0196355 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2036773969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A537931417</galeid><doaj_id>oai_doaj_org_article_94aacd1708c94049a22807de97eadf65</doaj_id><sourcerecordid>A537931417</sourcerecordid><originalsourceid>FETCH-LOGICAL-c729t-9ad4b83cad4aa49ed973437b276f0b2250a3c3cb26212fa0f30b67e31dc47af3</originalsourceid><addsrcrecordid>eNqNk11rFDEUhgdRbK3-A9EBQRS6ayaZmWxuhLV-FQoFrb0NZ5Iz29SZZE0yrXvpPzf70dKRXkguEpLnvCfnTU6WPS_ItGC8eHfpBm-hmy6dxSkpRM2q6kG2XwhGJzUl7OGd9V72JIRLQio2q-vH2R4VvKQFrfezPz-CsYv8A6wwGLC5XlnojYIuD6sQsQ-Hee80djlcoYfFmgWrc4uDT4zFeO38z5BHl2uM6HtjMTc2rUBF42zIm4Qg2jw4ZdwElbMu6SdGpyzR-fA0e9RCF_DZbj7Izj5_Ojv6Ojk5_XJ8ND-ZKE5FnAjQZTNjKk0ApUAtOCsZbyivW9JQWhFgiqmG1qmwFkjLSFNzZIVWJYeWHWQvt7LLzgW5My_IZE7NORO1SMTxltAOLuXSmx78SjowcrPh_EKCj0Z1KEW6g9IFJzMlSlIKoHRGuEbBEXRbV0nrcKsVrnE5NCO1j-Z8vlEbBskqUW_w97vLDU2PWqGNyd5R1PjEmgu5cFeyEiXlM5YE3uwEvPs1YIiyN0Fh14FFN2zK5KRMmda5Xv2D3m_GjlpAqtfY1qW8ai0q5xXjghVlwRM1vYdKQ2N65PQxW5P2RwFvRwGJifg7LmAIQR5___b_7On5mH19h71A6OJFcN2w-YNjsNyCyrsQPLa3JhdErvvqxg257iu566sU9uLuA90G3TQS-wu17iB1</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2036773969</pqid></control><display><type>article</type><title>Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators</title><source>DOAJ Directory of Open Access Journals</source><source>SWEPUB Freely available online</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Blomqvist, Björn R H ; Mann, Richard P ; Sumpter, David J T</creator><contributor>Daniels, Bryan C</contributor><creatorcontrib>Blomqvist, Björn R H ; Mann, Richard P ; Sumpter, David J T ; Daniels, Bryan C</creatorcontrib><description>Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We search for the 'best' explicit functions by fitting data using Bayesian linear regression on a vast number of models and then comparing their Bayes factors. The model with the highest Bayes factor, having the best trade-off between explanatory power and interpretability, is chosen as the 'best' model. To be able to compare a vast number of models, we use conjugate priors, resulting in fast computation times. We check the robustness of our approach by comparison with more prediction oriented approaches such as model averaging and neural networks. Our modelling approach is illustrated using the classical example of how democracy and economic growth relate to each other. We find that the best dynamical model for democracy suggests that long term democratic increase is only possible if the economic situation gets better. No robust model explaining economic development using these two variables was found.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0196355</identifier><identifier>PMID: 29742126</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Bayesian analysis ; Biology and Life Sciences ; Computer and Information Sciences ; Democracy ; Dynamical systems ; Economic development ; Economic growth ; Economic models ; Economic systems ; Indicators ; Mathematical models ; Mathematics ; Neural networks ; Nonlinear systems ; Physical Sciences ; Regression analysis ; Research and Analysis Methods ; Robustness (mathematics) ; Social Sciences ; Social systems ; Sustainable development ; Time series ; Variables</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0196355-e0196355</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Blomqvist et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Blomqvist et al 2018 Blomqvist et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c729t-9ad4b83cad4aa49ed973437b276f0b2250a3c3cb26212fa0f30b67e31dc47af3</citedby><cites>FETCH-LOGICAL-c729t-9ad4b83cad4aa49ed973437b276f0b2250a3c3cb26212fa0f30b67e31dc47af3</cites><orcidid>0000-0001-7029-1462</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942783/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5942783/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,551,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29742126$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-359665$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><contributor>Daniels, Bryan C</contributor><creatorcontrib>Blomqvist, Björn R H</creatorcontrib><creatorcontrib>Mann, Richard P</creatorcontrib><creatorcontrib>Sumpter, David J T</creatorcontrib><title>Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We search for the 'best' explicit functions by fitting data using Bayesian linear regression on a vast number of models and then comparing their Bayes factors. The model with the highest Bayes factor, having the best trade-off between explanatory power and interpretability, is chosen as the 'best' model. To be able to compare a vast number of models, we use conjugate priors, resulting in fast computation times. We check the robustness of our approach by comparison with more prediction oriented approaches such as model averaging and neural networks. Our modelling approach is illustrated using the classical example of how democracy and economic growth relate to each other. We find that the best dynamical model for democracy suggests that long term democratic increase is only possible if the economic situation gets better. No robust model explaining economic development using these two variables was found.</description><subject>Bayesian analysis</subject><subject>Biology and Life Sciences</subject><subject>Computer and Information Sciences</subject><subject>Democracy</subject><subject>Dynamical systems</subject><subject>Economic development</subject><subject>Economic growth</subject><subject>Economic models</subject><subject>Economic systems</subject><subject>Indicators</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Neural networks</subject><subject>Nonlinear systems</subject><subject>Physical Sciences</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Social Sciences</subject><subject>Social systems</subject><subject>Sustainable development</subject><subject>Time series</subject><subject>Variables</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>D8T</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11rFDEUhgdRbK3-A9EBQRS6ayaZmWxuhLV-FQoFrb0NZ5Iz29SZZE0yrXvpPzf70dKRXkguEpLnvCfnTU6WPS_ItGC8eHfpBm-hmy6dxSkpRM2q6kG2XwhGJzUl7OGd9V72JIRLQio2q-vH2R4VvKQFrfezPz-CsYv8A6wwGLC5XlnojYIuD6sQsQ-Hee80djlcoYfFmgWrc4uDT4zFeO38z5BHl2uM6HtjMTc2rUBF42zIm4Qg2jw4ZdwElbMu6SdGpyzR-fA0e9RCF_DZbj7Izj5_Ojv6Ojk5_XJ8ND-ZKE5FnAjQZTNjKk0ApUAtOCsZbyivW9JQWhFgiqmG1qmwFkjLSFNzZIVWJYeWHWQvt7LLzgW5My_IZE7NORO1SMTxltAOLuXSmx78SjowcrPh_EKCj0Z1KEW6g9IFJzMlSlIKoHRGuEbBEXRbV0nrcKsVrnE5NCO1j-Z8vlEbBskqUW_w97vLDU2PWqGNyd5R1PjEmgu5cFeyEiXlM5YE3uwEvPs1YIiyN0Fh14FFN2zK5KRMmda5Xv2D3m_GjlpAqtfY1qW8ai0q5xXjghVlwRM1vYdKQ2N65PQxW5P2RwFvRwGJifg7LmAIQR5___b_7On5mH19h71A6OJFcN2w-YNjsNyCyrsQPLa3JhdErvvqxg257iu566sU9uLuA90G3TQS-wu17iB1</recordid><startdate>20180509</startdate><enddate>20180509</enddate><creator>Blomqvist, Björn R H</creator><creator>Mann, Richard P</creator><creator>Sumpter, David J T</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>ACNBI</scope><scope>ADTPV</scope><scope>AOWAS</scope><scope>D8T</scope><scope>DF2</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7029-1462</orcidid></search><sort><creationdate>20180509</creationdate><title>Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators</title><author>Blomqvist, Björn R H ; Mann, Richard P ; Sumpter, David J T</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c729t-9ad4b83cad4aa49ed973437b276f0b2250a3c3cb26212fa0f30b67e31dc47af3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Bayesian analysis</topic><topic>Biology and Life Sciences</topic><topic>Computer and Information Sciences</topic><topic>Democracy</topic><topic>Dynamical systems</topic><topic>Economic development</topic><topic>Economic growth</topic><topic>Economic models</topic><topic>Economic systems</topic><topic>Indicators</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Neural networks</topic><topic>Nonlinear systems</topic><topic>Physical Sciences</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Social Sciences</topic><topic>Social systems</topic><topic>Sustainable development</topic><topic>Time series</topic><topic>Variables</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Blomqvist, Björn R H</creatorcontrib><creatorcontrib>Mann, Richard P</creatorcontrib><creatorcontrib>Sumpter, David J T</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SWEPUB Uppsala universitet full text</collection><collection>SwePub</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Uppsala universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Blomqvist, Björn R H</au><au>Mann, Richard P</au><au>Sumpter, David J T</au><au>Daniels, Bryan C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-09</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0196355</spage><epage>e0196355</epage><pages>e0196355-e0196355</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Social and economic systems produce complex and nonlinear relationships in the indicator variables that describe them. We present a Bayesian methodology to analyze the dynamical relationships between indicator variables by identifying the nonlinear functions that best describe their interactions. We search for the 'best' explicit functions by fitting data using Bayesian linear regression on a vast number of models and then comparing their Bayes factors. The model with the highest Bayes factor, having the best trade-off between explanatory power and interpretability, is chosen as the 'best' model. To be able to compare a vast number of models, we use conjugate priors, resulting in fast computation times. We check the robustness of our approach by comparison with more prediction oriented approaches such as model averaging and neural networks. Our modelling approach is illustrated using the classical example of how democracy and economic growth relate to each other. We find that the best dynamical model for democracy suggests that long term democratic increase is only possible if the economic situation gets better. No robust model explaining economic development using these two variables was found.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29742126</pmid><doi>10.1371/journal.pone.0196355</doi><tpages>e0196355</tpages><orcidid>https://orcid.org/0000-0001-7029-1462</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-05, Vol.13 (5), p.e0196355-e0196355 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2036773969 |
source | DOAJ Directory of Open Access Journals; SWEPUB Freely available online; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Bayesian analysis Biology and Life Sciences Computer and Information Sciences Democracy Dynamical systems Economic development Economic growth Economic models Economic systems Indicators Mathematical models Mathematics Neural networks Nonlinear systems Physical Sciences Regression analysis Research and Analysis Methods Robustness (mathematics) Social Sciences Social systems Sustainable development Time series Variables |
title | Using Bayesian dynamical systems, model averaging and neural networks to determine interactions between socio-economic indicators |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-17T23%3A58%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20Bayesian%20dynamical%20systems,%20model%20averaging%20and%20neural%20networks%20to%20determine%20interactions%20between%20socio-economic%20indicators&rft.jtitle=PloS%20one&rft.au=Blomqvist,%20Bj%C3%B6rn%20R%20H&rft.date=2018-05-09&rft.volume=13&rft.issue=5&rft.spage=e0196355&rft.epage=e0196355&rft.pages=e0196355-e0196355&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0196355&rft_dat=%3Cgale_plos_%3EA537931417%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2036773969&rft_id=info:pmid/29742126&rft_galeid=A537931417&rft_doaj_id=oai_doaj_org_article_94aacd1708c94049a22807de97eadf65&rfr_iscdi=true |