Droplet-based microfluidic analysis and screening of single plant cells
Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-05, Vol.13 (5), p.e0196810-e0196810 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0196810 |
---|---|
container_issue | 5 |
container_start_page | e0196810 |
container_title | PloS one |
container_volume | 13 |
creator | Yu, Ziyi Boehm, Christian R Hibberd, Julian M Abell, Chris Haseloff, Jim Burgess, Steven J Reyna-Llorens, Ivan |
description | Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes. |
doi_str_mv | 10.1371/journal.pone.0196810 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2034348234</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A537218328</galeid><doaj_id>oai_doaj_org_article_21d7ca01efb34094ab36799f75f77141</doaj_id><sourcerecordid>A537218328</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-b0bd1ed2f1494c1dce5480ac8b096746320174d4f34c38cb66791c8ddf624e363</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbF39B6IDgujFrvmaZHIjlKp1oVDw6zZk8jGbJTuZJjNi_73Z7rTsSC8kkITkOe_JOXmL4iUEK4gZ_LANY-ykX_WhMysAOa0heFScQo7RkiKAHx_tT4pnKW0BqHBN6dPiBHGGMGLVaXHxKYbem2HZyGR0uXMqButHp50qZZa_SS7ljS6TisZ0rmvLYMuUV2_K3stuKJXxPj0vnljpk3kxrYvi55fPP86_Li-vLtbnZ5dLRTnKWUCjodHIQsKJglqZitRAqroBnDJCMQKQEU0sJgrXqqGUcahqrS1FxGCKF8Xrg27vQxJTD5LINRJMapTnRbE-EDrIreij28l4I4J04vYgxFbIODjljUBQMyUBNLbBBHAiG5zzccsqyxgkMGt9nLKNzc7k13ZDlH4mOr_p3Ea04beoOMaUV1ng3SQQw_Vo0iB2Lu0bJjsTxtt3V4gginFG3_yDPlzdRLUyF-A6G3JetRcVZxVmCNYY1ZlaPUDloU3-4WwY6_L5LOD9LCAzg_kztHJMSay_f_t_9urXnH17xG6M9MMmBT8OLnRpDpIDmP2XUjT2vskQiL3f77oh9n4Xk99z2KvjD7oPujM4_guI7vkp</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2034348234</pqid></control><display><type>article</type><title>Droplet-based microfluidic analysis and screening of single plant cells</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yu, Ziyi ; Boehm, Christian R ; Hibberd, Julian M ; Abell, Chris ; Haseloff, Jim ; Burgess, Steven J ; Reyna-Llorens, Ivan</creator><contributor>Chalmers, Jeffrey</contributor><creatorcontrib>Yu, Ziyi ; Boehm, Christian R ; Hibberd, Julian M ; Abell, Chris ; Haseloff, Jim ; Burgess, Steven J ; Reyna-Llorens, Ivan ; Chalmers, Jeffrey</creatorcontrib><description>Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0196810</identifier><identifier>PMID: 29723275</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agrobacterium ; Agrobacterium tumefaciens - genetics ; Analysis ; Bacterial Proteins - analysis ; Bacterial Proteins - genetics ; Biology and Life Sciences ; Cell Separation - instrumentation ; Cell Separation - methods ; Cells (Biology) ; Deoxyribonucleic acid ; Dielectrophoresis ; DNA ; Drug Compounding ; Engineering and Technology ; Environmental conditions ; Equipment Design ; Gene expression ; Gene Expression Regulation, Plant ; Genes, Reporter ; Genetic engineering ; Genomes ; Genomics - methods ; High-Throughput Screening Assays - instrumentation ; High-Throughput Screening Assays - methods ; Hot Temperature ; Lab-On-A-Chip Devices ; Laboratories ; Luminescent Proteins - analysis ; Luminescent Proteins - genetics ; Mammalian cells ; Marchantia - chemistry ; Marchantia - cytology ; Marchantia - genetics ; Marchantia polymorpha ; Medical screening ; Medicine and Health Sciences ; Microfluidic Analytical Techniques - methods ; Microfluidics ; Microscopy, Fluorescence ; Phenotypes ; Phenotyping ; Physical Sciences ; Physiology ; Plant biology ; Plant cells ; Plant sciences ; Plants, Genetically Modified ; Prokaryotes ; Promoter Regions, Genetic ; Protoplasts ; Protoplasts - chemistry ; Single-Cell Analysis - instrumentation ; Single-Cell Analysis - methods ; Stochastic Processes ; Stochasticity ; Synthetic biology ; Transformation, Genetic</subject><ispartof>PloS one, 2018-05, Vol.13 (5), p.e0196810-e0196810</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Yu et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Yu et al 2018 Yu et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-b0bd1ed2f1494c1dce5480ac8b096746320174d4f34c38cb66791c8ddf624e363</citedby><cites>FETCH-LOGICAL-c692t-b0bd1ed2f1494c1dce5480ac8b096746320174d4f34c38cb66791c8ddf624e363</cites><orcidid>0000-0001-7964-7306</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933695/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5933695/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29723275$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Chalmers, Jeffrey</contributor><creatorcontrib>Yu, Ziyi</creatorcontrib><creatorcontrib>Boehm, Christian R</creatorcontrib><creatorcontrib>Hibberd, Julian M</creatorcontrib><creatorcontrib>Abell, Chris</creatorcontrib><creatorcontrib>Haseloff, Jim</creatorcontrib><creatorcontrib>Burgess, Steven J</creatorcontrib><creatorcontrib>Reyna-Llorens, Ivan</creatorcontrib><title>Droplet-based microfluidic analysis and screening of single plant cells</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.</description><subject>Agrobacterium</subject><subject>Agrobacterium tumefaciens - genetics</subject><subject>Analysis</subject><subject>Bacterial Proteins - analysis</subject><subject>Bacterial Proteins - genetics</subject><subject>Biology and Life Sciences</subject><subject>Cell Separation - instrumentation</subject><subject>Cell Separation - methods</subject><subject>Cells (Biology)</subject><subject>Deoxyribonucleic acid</subject><subject>Dielectrophoresis</subject><subject>DNA</subject><subject>Drug Compounding</subject><subject>Engineering and Technology</subject><subject>Environmental conditions</subject><subject>Equipment Design</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genes, Reporter</subject><subject>Genetic engineering</subject><subject>Genomes</subject><subject>Genomics - methods</subject><subject>High-Throughput Screening Assays - instrumentation</subject><subject>High-Throughput Screening Assays - methods</subject><subject>Hot Temperature</subject><subject>Lab-On-A-Chip Devices</subject><subject>Laboratories</subject><subject>Luminescent Proteins - analysis</subject><subject>Luminescent Proteins - genetics</subject><subject>Mammalian cells</subject><subject>Marchantia - chemistry</subject><subject>Marchantia - cytology</subject><subject>Marchantia - genetics</subject><subject>Marchantia polymorpha</subject><subject>Medical screening</subject><subject>Medicine and Health Sciences</subject><subject>Microfluidic Analytical Techniques - methods</subject><subject>Microfluidics</subject><subject>Microscopy, Fluorescence</subject><subject>Phenotypes</subject><subject>Phenotyping</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Plant biology</subject><subject>Plant cells</subject><subject>Plant sciences</subject><subject>Plants, Genetically Modified</subject><subject>Prokaryotes</subject><subject>Promoter Regions, Genetic</subject><subject>Protoplasts</subject><subject>Protoplasts - chemistry</subject><subject>Single-Cell Analysis - instrumentation</subject><subject>Single-Cell Analysis - methods</subject><subject>Stochastic Processes</subject><subject>Stochasticity</subject><subject>Synthetic biology</subject><subject>Transformation, Genetic</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbF39B6IDgujFrvmaZHIjlKp1oVDw6zZk8jGbJTuZJjNi_73Z7rTsSC8kkITkOe_JOXmL4iUEK4gZ_LANY-ykX_WhMysAOa0heFScQo7RkiKAHx_tT4pnKW0BqHBN6dPiBHGGMGLVaXHxKYbem2HZyGR0uXMqButHp50qZZa_SS7ljS6TisZ0rmvLYMuUV2_K3stuKJXxPj0vnljpk3kxrYvi55fPP86_Li-vLtbnZ5dLRTnKWUCjodHIQsKJglqZitRAqroBnDJCMQKQEU0sJgrXqqGUcahqrS1FxGCKF8Xrg27vQxJTD5LINRJMapTnRbE-EDrIreij28l4I4J04vYgxFbIODjljUBQMyUBNLbBBHAiG5zzccsqyxgkMGt9nLKNzc7k13ZDlH4mOr_p3Ea04beoOMaUV1ng3SQQw_Vo0iB2Lu0bJjsTxtt3V4gginFG3_yDPlzdRLUyF-A6G3JetRcVZxVmCNYY1ZlaPUDloU3-4WwY6_L5LOD9LCAzg_kztHJMSay_f_t_9urXnH17xG6M9MMmBT8OLnRpDpIDmP2XUjT2vskQiL3f77oh9n4Xk99z2KvjD7oPujM4_guI7vkp</recordid><startdate>20180503</startdate><enddate>20180503</enddate><creator>Yu, Ziyi</creator><creator>Boehm, Christian R</creator><creator>Hibberd, Julian M</creator><creator>Abell, Chris</creator><creator>Haseloff, Jim</creator><creator>Burgess, Steven J</creator><creator>Reyna-Llorens, Ivan</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7964-7306</orcidid></search><sort><creationdate>20180503</creationdate><title>Droplet-based microfluidic analysis and screening of single plant cells</title><author>Yu, Ziyi ; Boehm, Christian R ; Hibberd, Julian M ; Abell, Chris ; Haseloff, Jim ; Burgess, Steven J ; Reyna-Llorens, Ivan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-b0bd1ed2f1494c1dce5480ac8b096746320174d4f34c38cb66791c8ddf624e363</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agrobacterium</topic><topic>Agrobacterium tumefaciens - genetics</topic><topic>Analysis</topic><topic>Bacterial Proteins - analysis</topic><topic>Bacterial Proteins - genetics</topic><topic>Biology and Life Sciences</topic><topic>Cell Separation - instrumentation</topic><topic>Cell Separation - methods</topic><topic>Cells (Biology)</topic><topic>Deoxyribonucleic acid</topic><topic>Dielectrophoresis</topic><topic>DNA</topic><topic>Drug Compounding</topic><topic>Engineering and Technology</topic><topic>Environmental conditions</topic><topic>Equipment Design</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genes, Reporter</topic><topic>Genetic engineering</topic><topic>Genomes</topic><topic>Genomics - methods</topic><topic>High-Throughput Screening Assays - instrumentation</topic><topic>High-Throughput Screening Assays - methods</topic><topic>Hot Temperature</topic><topic>Lab-On-A-Chip Devices</topic><topic>Laboratories</topic><topic>Luminescent Proteins - analysis</topic><topic>Luminescent Proteins - genetics</topic><topic>Mammalian cells</topic><topic>Marchantia - chemistry</topic><topic>Marchantia - cytology</topic><topic>Marchantia - genetics</topic><topic>Marchantia polymorpha</topic><topic>Medical screening</topic><topic>Medicine and Health Sciences</topic><topic>Microfluidic Analytical Techniques - methods</topic><topic>Microfluidics</topic><topic>Microscopy, Fluorescence</topic><topic>Phenotypes</topic><topic>Phenotyping</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Plant biology</topic><topic>Plant cells</topic><topic>Plant sciences</topic><topic>Plants, Genetically Modified</topic><topic>Prokaryotes</topic><topic>Promoter Regions, Genetic</topic><topic>Protoplasts</topic><topic>Protoplasts - chemistry</topic><topic>Single-Cell Analysis - instrumentation</topic><topic>Single-Cell Analysis - methods</topic><topic>Stochastic Processes</topic><topic>Stochasticity</topic><topic>Synthetic biology</topic><topic>Transformation, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Ziyi</creatorcontrib><creatorcontrib>Boehm, Christian R</creatorcontrib><creatorcontrib>Hibberd, Julian M</creatorcontrib><creatorcontrib>Abell, Chris</creatorcontrib><creatorcontrib>Haseloff, Jim</creatorcontrib><creatorcontrib>Burgess, Steven J</creatorcontrib><creatorcontrib>Reyna-Llorens, Ivan</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Ziyi</au><au>Boehm, Christian R</au><au>Hibberd, Julian M</au><au>Abell, Chris</au><au>Haseloff, Jim</au><au>Burgess, Steven J</au><au>Reyna-Llorens, Ivan</au><au>Chalmers, Jeffrey</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Droplet-based microfluidic analysis and screening of single plant cells</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-05-03</date><risdate>2018</risdate><volume>13</volume><issue>5</issue><spage>e0196810</spage><epage>e0196810</epage><pages>e0196810-e0196810</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Droplet-based microfluidics has been used to facilitate high-throughput analysis of individual prokaryote and mammalian cells. However, there is a scarcity of similar workflows applicable to rapid phenotyping of plant systems where phenotyping analyses typically are time-consuming and low-throughput. We report on-chip encapsulation and analysis of protoplasts isolated from the emergent plant model Marchantia polymorpha at processing rates of >100,000 cells per hour. We use our microfluidic system to quantify the stochastic properties of a heat-inducible promoter across a population of transgenic protoplasts to demonstrate its potential for assessing gene expression activity in response to environmental conditions. We further demonstrate on-chip sorting of droplets containing YFP-expressing protoplasts from wild type cells using dielectrophoresis force. This work opens the door to droplet-based microfluidic analysis of plant cells for applications ranging from high-throughput characterisation of DNA parts to single-cell genomics to selection of rare plant phenotypes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29723275</pmid><doi>10.1371/journal.pone.0196810</doi><tpages>e0196810</tpages><orcidid>https://orcid.org/0000-0001-7964-7306</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-05, Vol.13 (5), p.e0196810-e0196810 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2034348234 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agrobacterium Agrobacterium tumefaciens - genetics Analysis Bacterial Proteins - analysis Bacterial Proteins - genetics Biology and Life Sciences Cell Separation - instrumentation Cell Separation - methods Cells (Biology) Deoxyribonucleic acid Dielectrophoresis DNA Drug Compounding Engineering and Technology Environmental conditions Equipment Design Gene expression Gene Expression Regulation, Plant Genes, Reporter Genetic engineering Genomes Genomics - methods High-Throughput Screening Assays - instrumentation High-Throughput Screening Assays - methods Hot Temperature Lab-On-A-Chip Devices Laboratories Luminescent Proteins - analysis Luminescent Proteins - genetics Mammalian cells Marchantia - chemistry Marchantia - cytology Marchantia - genetics Marchantia polymorpha Medical screening Medicine and Health Sciences Microfluidic Analytical Techniques - methods Microfluidics Microscopy, Fluorescence Phenotypes Phenotyping Physical Sciences Physiology Plant biology Plant cells Plant sciences Plants, Genetically Modified Prokaryotes Promoter Regions, Genetic Protoplasts Protoplasts - chemistry Single-Cell Analysis - instrumentation Single-Cell Analysis - methods Stochastic Processes Stochasticity Synthetic biology Transformation, Genetic |
title | Droplet-based microfluidic analysis and screening of single plant cells |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T22%3A56%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Droplet-based%20microfluidic%20analysis%20and%20screening%20of%20single%20plant%20cells&rft.jtitle=PloS%20one&rft.au=Yu,%20Ziyi&rft.date=2018-05-03&rft.volume=13&rft.issue=5&rft.spage=e0196810&rft.epage=e0196810&rft.pages=e0196810-e0196810&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0196810&rft_dat=%3Cgale_plos_%3EA537218328%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2034348234&rft_id=info:pmid/29723275&rft_galeid=A537218328&rft_doaj_id=oai_doaj_org_article_21d7ca01efb34094ab36799f75f77141&rfr_iscdi=true |