The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach
The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-04, Vol.13 (4), p.e0196135-e0196135 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0196135 |
---|---|
container_issue | 4 |
container_start_page | e0196135 |
container_title | PloS one |
container_volume | 13 |
creator | Hleap, Jose Sergio Blouin, Christian |
description | The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases) is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape. |
doi_str_mv | 10.1371/journal.pone.0196135 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2031412945</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536332604</galeid><doaj_id>oai_doaj_org_article_15a75de31faa4a85b5c01b7aaf42653d</doaj_id><sourcerecordid>A536332604</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-18669ad630e15e616a7d7d0910f86c025e253086d024957758324e8547820913</originalsourceid><addsrcrecordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpLpw5LtXgxCWdtAobCF3YoT-ThRUKxUksvy76c0bklGL4Yu9PW8r46OdLLsPSVjykv6beV634Edb1yHY0JrSbl4kZ3SmrORZIS_PBifZG9CWBEieCXl6-yE1bKuClqeZmG2xNxjSC4B8-jygBZ1NK7LTZdf2a12wTSYX28b7ywk5hLWxm5zyvMQfa9jn9Tn-STXbr0BD9HcY37XQxdN3E8W2GE0OuSw2XgHevk2e9WCDfhu6M-y2eWP2cX16Ob2anoxuRlpWbM4oinWGhrJCVKBkkoom7IhNSVtJTVhApngpJINYUUtylJUnBVYiaKsWKL4WfZxb7uxLqghXUGldNCCsroQiZjuicbBSm28WYPfKgdGPSw4v1DgU-gWFRVQigY5bQEKqMRcaELnJUBbMCl4k7y-D6f18zU2GrvowR6ZHu90ZqkW7l6JOr0dk8ngy2Dg3V2PIaq1CRqthQ5d_xA347Ws2C7uT_-gz99uoBaQLmC61qVz9c5UTQSXnDNJikSNn6FSa3BtdPpbrUnrR4KvR4LERPwTF9CHoKa_fv4_e_v7mP18wC4RbFwGZ_vdXwzHYLEHtXcheGyfkkyJ2pXGYzbUrjTUUBpJ9uHwgZ5Ej7XA_wLAoggM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031412945</pqid></control><display><type>article</type><title>The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Hleap, Jose Sergio ; Blouin, Christian</creator><creatorcontrib>Hleap, Jose Sergio ; Blouin, Christian</creatorcontrib><description>The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases) is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0196135</identifier><identifier>PMID: 29698417</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Amylases ; Bioengineering ; Biology and Life Sciences ; Carbohydrates ; Catalysis ; Comparative analysis ; Ecology ; Enzymes ; Evolution & development ; Evolutionary biology ; Families & family life ; Feasibility studies ; Fitness ; Genetics ; Glucan ; Glycoside hydrolase ; Helices ; Hydrolase ; Hydrolases ; Industrial applications ; Molecular biology ; Phylogenetics ; Phylogeny ; Physical Sciences ; Protein folding ; Proteins ; Quantitative genetics ; Reproductive fitness ; Residues ; Stability ; Starch ; α-Amylase</subject><ispartof>PloS one, 2018-04, Vol.13 (4), p.e0196135-e0196135</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Hleap, Blouin. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Hleap, Blouin 2018 Hleap, Blouin</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-18669ad630e15e616a7d7d0910f86c025e253086d024957758324e8547820913</citedby><cites>FETCH-LOGICAL-c692t-18669ad630e15e616a7d7d0910f86c025e253086d024957758324e8547820913</cites><orcidid>0000-0003-2602-5276 ; 0000-0002-4434-4142</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919626/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919626/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29698417$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hleap, Jose Sergio</creatorcontrib><creatorcontrib>Blouin, Christian</creatorcontrib><title>The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases) is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape.</description><subject>Amylases</subject><subject>Bioengineering</subject><subject>Biology and Life Sciences</subject><subject>Carbohydrates</subject><subject>Catalysis</subject><subject>Comparative analysis</subject><subject>Ecology</subject><subject>Enzymes</subject><subject>Evolution & development</subject><subject>Evolutionary biology</subject><subject>Families & family life</subject><subject>Feasibility studies</subject><subject>Fitness</subject><subject>Genetics</subject><subject>Glucan</subject><subject>Glycoside hydrolase</subject><subject>Helices</subject><subject>Hydrolase</subject><subject>Hydrolases</subject><subject>Industrial applications</subject><subject>Molecular biology</subject><subject>Phylogenetics</subject><subject>Phylogeny</subject><subject>Physical Sciences</subject><subject>Protein folding</subject><subject>Proteins</subject><subject>Quantitative genetics</subject><subject>Reproductive fitness</subject><subject>Residues</subject><subject>Stability</subject><subject>Starch</subject><subject>α-Amylase</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk11r2zAUhs3YWLtu_2BshsHYLpLpw5LtXgxCWdtAobCF3YoT-ThRUKxUksvy76c0bklGL4Yu9PW8r46OdLLsPSVjykv6beV634Edb1yHY0JrSbl4kZ3SmrORZIS_PBifZG9CWBEieCXl6-yE1bKuClqeZmG2xNxjSC4B8-jygBZ1NK7LTZdf2a12wTSYX28b7ywk5hLWxm5zyvMQfa9jn9Tn-STXbr0BD9HcY37XQxdN3E8W2GE0OuSw2XgHevk2e9WCDfhu6M-y2eWP2cX16Ob2anoxuRlpWbM4oinWGhrJCVKBkkoom7IhNSVtJTVhApngpJINYUUtylJUnBVYiaKsWKL4WfZxb7uxLqghXUGldNCCsroQiZjuicbBSm28WYPfKgdGPSw4v1DgU-gWFRVQigY5bQEKqMRcaELnJUBbMCl4k7y-D6f18zU2GrvowR6ZHu90ZqkW7l6JOr0dk8ngy2Dg3V2PIaq1CRqthQ5d_xA347Ws2C7uT_-gz99uoBaQLmC61qVz9c5UTQSXnDNJikSNn6FSa3BtdPpbrUnrR4KvR4LERPwTF9CHoKa_fv4_e_v7mP18wC4RbFwGZ_vdXwzHYLEHtXcheGyfkkyJ2pXGYzbUrjTUUBpJ9uHwgZ5Ej7XA_wLAoggM</recordid><startdate>20180426</startdate><enddate>20180426</enddate><creator>Hleap, Jose Sergio</creator><creator>Blouin, Christian</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2602-5276</orcidid><orcidid>https://orcid.org/0000-0002-4434-4142</orcidid></search><sort><creationdate>20180426</creationdate><title>The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach</title><author>Hleap, Jose Sergio ; Blouin, Christian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-18669ad630e15e616a7d7d0910f86c025e253086d024957758324e8547820913</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Amylases</topic><topic>Bioengineering</topic><topic>Biology and Life Sciences</topic><topic>Carbohydrates</topic><topic>Catalysis</topic><topic>Comparative analysis</topic><topic>Ecology</topic><topic>Enzymes</topic><topic>Evolution & development</topic><topic>Evolutionary biology</topic><topic>Families & family life</topic><topic>Feasibility studies</topic><topic>Fitness</topic><topic>Genetics</topic><topic>Glucan</topic><topic>Glycoside hydrolase</topic><topic>Helices</topic><topic>Hydrolase</topic><topic>Hydrolases</topic><topic>Industrial applications</topic><topic>Molecular biology</topic><topic>Phylogenetics</topic><topic>Phylogeny</topic><topic>Physical Sciences</topic><topic>Protein folding</topic><topic>Proteins</topic><topic>Quantitative genetics</topic><topic>Reproductive fitness</topic><topic>Residues</topic><topic>Stability</topic><topic>Starch</topic><topic>α-Amylase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hleap, Jose Sergio</creatorcontrib><creatorcontrib>Blouin, Christian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hleap, Jose Sergio</au><au>Blouin, Christian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-04-26</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>e0196135</spage><epage>e0196135</epage><pages>e0196135-e0196135</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The Glycoside Hydrolase Family 13 (GH13) is both evolutionarily diverse and relevant to many industrial applications. Its members hydrolyze starch into smaller carbohydrates and members of the family have been bioengineered to improve catalytic function under industrial environments. We introduce a framework to analyze the response to selection of GH13 protein structures given some phylogenetic and simulated dynamic information. We find that the TIM-barrel (a conserved protein fold consisting of eight α-helices and eight parallel β-strands that alternate along the peptide backbone, common to all amylases) is not selectable since it is under purifying selection. We also show a method to rank important residues with higher inferred response to selection. These residues can be altered to effect change in properties. In this work, we define fitness as inferred thermodynamic stability. We show that under the developed framework, residues 112Y, 122K, 124D, 125W, and 126P are good candidates to increase the stability of the truncated α-amylase protein from Geobacillus thermoleovorans (PDB code: 4E2O; α-1,4-glucan-4-glucanohydrolase; EC 3.2.1.1). Overall, this paper demonstrates the feasibility of a framework for the analysis of protein structures for any other fitness landscape.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29698417</pmid><doi>10.1371/journal.pone.0196135</doi><tpages>e0196135</tpages><orcidid>https://orcid.org/0000-0003-2602-5276</orcidid><orcidid>https://orcid.org/0000-0002-4434-4142</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-04, Vol.13 (4), p.e0196135-e0196135 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2031412945 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amylases Bioengineering Biology and Life Sciences Carbohydrates Catalysis Comparative analysis Ecology Enzymes Evolution & development Evolutionary biology Families & family life Feasibility studies Fitness Genetics Glucan Glycoside hydrolase Helices Hydrolase Hydrolases Industrial applications Molecular biology Phylogenetics Phylogeny Physical Sciences Protein folding Proteins Quantitative genetics Reproductive fitness Residues Stability Starch α-Amylase |
title | The response to selection in Glycoside Hydrolase Family 13 structures: A comparative quantitative genetics approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T01%3A04%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20response%20to%20selection%20in%20Glycoside%20Hydrolase%20Family%2013%20structures:%20A%20comparative%20quantitative%20genetics%20approach&rft.jtitle=PloS%20one&rft.au=Hleap,%20Jose%20Sergio&rft.date=2018-04-26&rft.volume=13&rft.issue=4&rft.spage=e0196135&rft.epage=e0196135&rft.pages=e0196135-e0196135&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0196135&rft_dat=%3Cgale_plos_%3EA536332604%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2031412945&rft_id=info:pmid/29698417&rft_galeid=A536332604&rft_doaj_id=oai_doaj_org_article_15a75de31faa4a85b5c01b7aaf42653d&rfr_iscdi=true |