Finding overlapping communities in multilayer networks
Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the i...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-04, Vol.13 (4), p.e0188747-e0188747 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0188747 |
---|---|
container_issue | 4 |
container_start_page | e0188747 |
container_title | PloS one |
container_volume | 13 |
creator | Liu, Weiyi Suzumura, Toyotaro Ji, Hongyu Hu, Guangmin |
description | Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks. |
doi_str_mv | 10.1371/journal.pone.0188747 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2030876768</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536183817</galeid><doaj_id>oai_doaj_org_article_fab27f92e78f4b5e8683b5ab654fb2c8</doaj_id><sourcerecordid>A536183817</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-74519fdac72519f42fbe41d6671948cf1141a97ffd4879221a374608f8cf370b3</originalsourceid><addsrcrecordid>eNqNkl1rFDEYhQdRbK3-A9EFQfRi10kmk48boRSrC4WCX7chk0lms2aSbZKp9t-b6U7LjvRCJjAvyXNO8ianKF6CcgUqAj5s_RCcsKudd2pVAkoJIo-KY8AquMSwrB4f1EfFsxi3ZVlXFOOnxRFkmKGKkuMCnxvXGtct_LUKVux2Yy193w_OJKPiwrhFP9hkrLhRYeFU-u3Dr_i8eKKFjerF9D8pfpx_-n72ZXlx-Xl9dnqxlJjBtCSoBky3QhI4FgjqRiHQYkwAQ1RqABAQjGjdIkoYhEBUBOGS6rxWkbKpTorXe9-d9ZFPLUeeWyopwQTTTKz3ROvFlu-C6UW44V4YfjvhQ8dFSEZaxbVoINEMKkI1ampFs7ypRYNrpBsoR6-P025D06tWKpeCsDPT-YozG975a14zwEpUZ4N3k0HwV4OKifcmSmWtcMoPt-cGCOZBMvrmH_Th7iaqE7kB47TP-8rRlJ_WFQa0omD0Wj1A5a9VvZE5H9rk-Zng_UyQmaT-pE4MMfL1t6__z17-nLNvD9iNEjZtordDMt7FOYj2oAw-xqD0_SWDko_xvrsNPsabT_HOsleHD3Qvustz9RcMDfQr</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030876768</pqid></control><display><type>article</type><title>Finding overlapping communities in multilayer networks</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Liu, Weiyi ; Suzumura, Toyotaro ; Ji, Hongyu ; Hu, Guangmin</creator><creatorcontrib>Liu, Weiyi ; Suzumura, Toyotaro ; Ji, Hongyu ; Hu, Guangmin</creatorcontrib><description>Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0188747</identifier><identifier>PMID: 29694387</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analogies ; Big Data ; Biology and Life Sciences ; Communication ; Complex systems ; Computer and Information Sciences ; Cooperation ; Data analysis ; Ecology and Environmental Sciences ; Engineering research ; International conferences ; Nature ; Network analysis (Planning) ; Networks ; Neural networks ; Physical Sciences ; Recommender systems ; Research and Analysis Methods ; Researchers ; Social networks ; Social Sciences ; Topology</subject><ispartof>PloS one, 2018-04, Vol.13 (4), p.e0188747-e0188747</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>This is an open access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication: https://creativecommons.org/publicdomain/zero/1.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-74519fdac72519f42fbe41d6671948cf1141a97ffd4879221a374608f8cf370b3</citedby><cites>FETCH-LOGICAL-c692t-74519fdac72519f42fbe41d6671948cf1141a97ffd4879221a374608f8cf370b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919045/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5919045/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79343,79344</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29694387$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Liu, Weiyi</creatorcontrib><creatorcontrib>Suzumura, Toyotaro</creatorcontrib><creatorcontrib>Ji, Hongyu</creatorcontrib><creatorcontrib>Hu, Guangmin</creatorcontrib><title>Finding overlapping communities in multilayer networks</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.</description><subject>Algorithms</subject><subject>Analogies</subject><subject>Big Data</subject><subject>Biology and Life Sciences</subject><subject>Communication</subject><subject>Complex systems</subject><subject>Computer and Information Sciences</subject><subject>Cooperation</subject><subject>Data analysis</subject><subject>Ecology and Environmental Sciences</subject><subject>Engineering research</subject><subject>International conferences</subject><subject>Nature</subject><subject>Network analysis (Planning)</subject><subject>Networks</subject><subject>Neural networks</subject><subject>Physical Sciences</subject><subject>Recommender systems</subject><subject>Research and Analysis Methods</subject><subject>Researchers</subject><subject>Social networks</subject><subject>Social Sciences</subject><subject>Topology</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEYhQdRbK3-A9EFQfRi10kmk48boRSrC4WCX7chk0lms2aSbZKp9t-b6U7LjvRCJjAvyXNO8ianKF6CcgUqAj5s_RCcsKudd2pVAkoJIo-KY8AquMSwrB4f1EfFsxi3ZVlXFOOnxRFkmKGKkuMCnxvXGtct_LUKVux2Yy193w_OJKPiwrhFP9hkrLhRYeFU-u3Dr_i8eKKFjerF9D8pfpx_-n72ZXlx-Xl9dnqxlJjBtCSoBky3QhI4FgjqRiHQYkwAQ1RqABAQjGjdIkoYhEBUBOGS6rxWkbKpTorXe9-d9ZFPLUeeWyopwQTTTKz3ROvFlu-C6UW44V4YfjvhQ8dFSEZaxbVoINEMKkI1ampFs7ypRYNrpBsoR6-P025D06tWKpeCsDPT-YozG975a14zwEpUZ4N3k0HwV4OKifcmSmWtcMoPt-cGCOZBMvrmH_Th7iaqE7kB47TP-8rRlJ_WFQa0omD0Wj1A5a9VvZE5H9rk-Zng_UyQmaT-pE4MMfL1t6__z17-nLNvD9iNEjZtordDMt7FOYj2oAw-xqD0_SWDko_xvrsNPsabT_HOsleHD3Qvustz9RcMDfQr</recordid><startdate>20180425</startdate><enddate>20180425</enddate><creator>Liu, Weiyi</creator><creator>Suzumura, Toyotaro</creator><creator>Ji, Hongyu</creator><creator>Hu, Guangmin</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20180425</creationdate><title>Finding overlapping communities in multilayer networks</title><author>Liu, Weiyi ; Suzumura, Toyotaro ; Ji, Hongyu ; Hu, Guangmin</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-74519fdac72519f42fbe41d6671948cf1141a97ffd4879221a374608f8cf370b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analogies</topic><topic>Big Data</topic><topic>Biology and Life Sciences</topic><topic>Communication</topic><topic>Complex systems</topic><topic>Computer and Information Sciences</topic><topic>Cooperation</topic><topic>Data analysis</topic><topic>Ecology and Environmental Sciences</topic><topic>Engineering research</topic><topic>International conferences</topic><topic>Nature</topic><topic>Network analysis (Planning)</topic><topic>Networks</topic><topic>Neural networks</topic><topic>Physical Sciences</topic><topic>Recommender systems</topic><topic>Research and Analysis Methods</topic><topic>Researchers</topic><topic>Social networks</topic><topic>Social Sciences</topic><topic>Topology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Weiyi</creatorcontrib><creatorcontrib>Suzumura, Toyotaro</creatorcontrib><creatorcontrib>Ji, Hongyu</creatorcontrib><creatorcontrib>Hu, Guangmin</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Weiyi</au><au>Suzumura, Toyotaro</au><au>Ji, Hongyu</au><au>Hu, Guangmin</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Finding overlapping communities in multilayer networks</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-04-25</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>e0188747</spage><epage>e0188747</epage><pages>e0188747-e0188747</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Finding communities in multilayer networks is a vital step in understanding the structure and dynamics of these layers, where each layer represents a particular type of relationship between nodes in the natural world. However, most community discovery methods for multilayer networks may ignore the interplay between layers or the unique topological structure in a layer. Moreover, most of them can only detect non-overlapping communities. In this paper, we propose a new community discovery method for multilayer networks, which leverages the interplay between layers and the unique topology in a layer to reveal overlapping communities. Through a comprehensive analysis of edge behaviors within and across layers, we first calculate the similarities for edges from the same layer and the cross layers. Then, by leveraging these similarities, we can construct a dendrogram for the multilayer networks that takes both the unique topological structure and the important interplay into consideration. Finally, by introducing a new community density metric for multilayer networks, we can cut the dendrogram to get the overlapping communities for these layers. By applying our method on both synthetic and real-world datasets, we demonstrate that our method has an accurate performance in discovering overlapping communities in multilayer networks.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29694387</pmid><doi>10.1371/journal.pone.0188747</doi><tpages>e0188747</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-04, Vol.13 (4), p.e0188747-e0188747 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2030876768 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS) |
subjects | Algorithms Analogies Big Data Biology and Life Sciences Communication Complex systems Computer and Information Sciences Cooperation Data analysis Ecology and Environmental Sciences Engineering research International conferences Nature Network analysis (Planning) Networks Neural networks Physical Sciences Recommender systems Research and Analysis Methods Researchers Social networks Social Sciences Topology |
title | Finding overlapping communities in multilayer networks |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A35%3A45IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Finding%20overlapping%20communities%20in%20multilayer%20networks&rft.jtitle=PloS%20one&rft.au=Liu,%20Weiyi&rft.date=2018-04-25&rft.volume=13&rft.issue=4&rft.spage=e0188747&rft.epage=e0188747&rft.pages=e0188747-e0188747&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0188747&rft_dat=%3Cgale_plos_%3EA536183817%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030876768&rft_id=info:pmid/29694387&rft_galeid=A536183817&rft_doaj_id=oai_doaj_org_article_fab27f92e78f4b5e8683b5ab654fb2c8&rfr_iscdi=true |