Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock

Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the p...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-04, Vol.13 (4), p.e0196321-e0196321
Hauptverfasser: Ostadal, Petr, Mlcek, Mikulas, Gorhan, Holger, Simundic, Ivo, Strunina, Svitlana, Hrachovina, Matej, Krüger, Andreas, Vondrakova, Dagmar, Janotka, Marek, Hala, Pavel, Mates, Martin, Ostadal, Martin, Leiter, James C, Kittnar, Otomar, Neuzil, Petr
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0196321
container_issue 4
container_start_page e0196321
container_title PloS one
container_volume 13
creator Ostadal, Petr
Mlcek, Mikulas
Gorhan, Holger
Simundic, Ivo
Strunina, Svitlana
Hrachovina, Matej
Krüger, Andreas
Vondrakova, Dagmar
Janotka, Marek
Hala, Pavel
Mates, Martin
Ostadal, Martin
Leiter, James C
Kittnar, Otomar
Neuzil, Petr
description Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P
doi_str_mv 10.1371/journal.pone.0196321
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2030210545</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A536038464</galeid><doaj_id>oai_doaj_org_article_871a12375f294a3293cf8f6a1f323dc2</doaj_id><sourcerecordid>A536038464</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-49f0a016ae5d110fbc7c540491237c96abce44e606aa114eed84d86b4d964ee73</originalsourceid><addsrcrecordid>eNqNk89u1DAQxiMEoqXwBggsISE47GLHjje-IFVVgZUqVeLf1fI6410Xrx3sZKE8Dk-Kw6bVBvWAckjs_L7PM-OZonhK8JzQBXlzFfrolZu3wcMcE8FpSe4Vx0TQcsZLTO8ffB8Vj1K6wriiNecPi6NS8Frguj4ufp870F0MWsXGhnVU21m69noTg7e_oEFt75LqrAMEP7uodIhtiKAcctYASn2blx1qIySIO0jIgenQDnwXre6disj0Xnc2eKR8g7I8eBWvkXHhB7J5E2W9th7QNjTgUDBojAS81Shtgv72uHhglEvwZHyfFF_enX8--zC7uHy_PDu9mGkuym7GhMEKE66gagjBZqUXumKYCVLShRZcrTQwBhxzpQhhAE3NmpqvWCN4Xi3oSfF879u6kORY3iRz-XBJcMWqTCz3RBPUlWyj3eZcZFBW_t0IcS1V7Kx2IOsFUcPBlSkFU7QUVJvacEUMLWmjy-z1djytX22h0UPJlJuYTv94u5HrsJOVIFW5GMJ9NRrE8L2H1MmtTRqcUx5Cv49bEMw4y-iLf9C7sxuptcoJWG_CcOGDqTytKMe03nvN76Dy08DW6tyLJjfLVPB6IshMl3tprfqU5PLTx_9nL79O2ZcH7Cb3ZLdJwfVDs6UpyPagjiGlCOa2yATLYZRuqiGHUZLjKGXZs8MLuhXdzA79AxwhHYU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2030210545</pqid></control><display><type>article</type><title>Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Ostadal, Petr ; Mlcek, Mikulas ; Gorhan, Holger ; Simundic, Ivo ; Strunina, Svitlana ; Hrachovina, Matej ; Krüger, Andreas ; Vondrakova, Dagmar ; Janotka, Marek ; Hala, Pavel ; Mates, Martin ; Ostadal, Martin ; Leiter, James C ; Kittnar, Otomar ; Neuzil, Petr</creator><creatorcontrib>Ostadal, Petr ; Mlcek, Mikulas ; Gorhan, Holger ; Simundic, Ivo ; Strunina, Svitlana ; Hrachovina, Matej ; Krüger, Andreas ; Vondrakova, Dagmar ; Janotka, Marek ; Hala, Pavel ; Mates, Martin ; Ostadal, Martin ; Leiter, James C ; Kittnar, Otomar ; Neuzil, Petr</creatorcontrib><description>Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P&lt;0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0196321</identifier><identifier>PMID: 29689088</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Analysis ; Anesthesia ; Artificial blood circulation ; Biology and Life Sciences ; Blood pressure ; Body weight ; Cardiac output ; Cardiogenic shock ; Care and treatment ; Catheters ; Diastolic pressure ; Echocardiography ; EKG ; Electrocardiography ; Heart ; Hemodynamics ; Hypoxia ; Implantation ; Laboratory animals ; Life support systems ; Livestock ; Medical instruments ; Medicine ; Medicine and Health Sciences ; Methods ; Physical Sciences ; Physiology ; Pulmonary artery ; Research and Analysis Methods ; Shock ; Stroke ; Stroke volume ; Studies ; Swine ; Systolic pressure ; Thoracic surgery ; Ventilation ; Ventilators ; Ventricle</subject><ispartof>PloS one, 2018-04, Vol.13 (4), p.e0196321-e0196321</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Ostadal et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Ostadal et al 2018 Ostadal et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-49f0a016ae5d110fbc7c540491237c96abce44e606aa114eed84d86b4d964ee73</citedby><cites>FETCH-LOGICAL-c692t-49f0a016ae5d110fbc7c540491237c96abce44e606aa114eed84d86b4d964ee73</cites><orcidid>0000-0001-9550-222X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915277/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5915277/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29689088$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ostadal, Petr</creatorcontrib><creatorcontrib>Mlcek, Mikulas</creatorcontrib><creatorcontrib>Gorhan, Holger</creatorcontrib><creatorcontrib>Simundic, Ivo</creatorcontrib><creatorcontrib>Strunina, Svitlana</creatorcontrib><creatorcontrib>Hrachovina, Matej</creatorcontrib><creatorcontrib>Krüger, Andreas</creatorcontrib><creatorcontrib>Vondrakova, Dagmar</creatorcontrib><creatorcontrib>Janotka, Marek</creatorcontrib><creatorcontrib>Hala, Pavel</creatorcontrib><creatorcontrib>Mates, Martin</creatorcontrib><creatorcontrib>Ostadal, Martin</creatorcontrib><creatorcontrib>Leiter, James C</creatorcontrib><creatorcontrib>Kittnar, Otomar</creatorcontrib><creatorcontrib>Neuzil, Petr</creatorcontrib><title>Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P&lt;0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.</description><subject>Analysis</subject><subject>Anesthesia</subject><subject>Artificial blood circulation</subject><subject>Biology and Life Sciences</subject><subject>Blood pressure</subject><subject>Body weight</subject><subject>Cardiac output</subject><subject>Cardiogenic shock</subject><subject>Care and treatment</subject><subject>Catheters</subject><subject>Diastolic pressure</subject><subject>Echocardiography</subject><subject>EKG</subject><subject>Electrocardiography</subject><subject>Heart</subject><subject>Hemodynamics</subject><subject>Hypoxia</subject><subject>Implantation</subject><subject>Laboratory animals</subject><subject>Life support systems</subject><subject>Livestock</subject><subject>Medical instruments</subject><subject>Medicine</subject><subject>Medicine and Health Sciences</subject><subject>Methods</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Pulmonary artery</subject><subject>Research and Analysis Methods</subject><subject>Shock</subject><subject>Stroke</subject><subject>Stroke volume</subject><subject>Studies</subject><subject>Swine</subject><subject>Systolic pressure</subject><subject>Thoracic surgery</subject><subject>Ventilation</subject><subject>Ventilators</subject><subject>Ventricle</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqNk89u1DAQxiMEoqXwBggsISE47GLHjje-IFVVgZUqVeLf1fI6410Xrx3sZKE8Dk-Kw6bVBvWAckjs_L7PM-OZonhK8JzQBXlzFfrolZu3wcMcE8FpSe4Vx0TQcsZLTO8ffB8Vj1K6wriiNecPi6NS8Frguj4ufp870F0MWsXGhnVU21m69noTg7e_oEFt75LqrAMEP7uodIhtiKAcctYASn2blx1qIySIO0jIgenQDnwXre6disj0Xnc2eKR8g7I8eBWvkXHhB7J5E2W9th7QNjTgUDBojAS81Shtgv72uHhglEvwZHyfFF_enX8--zC7uHy_PDu9mGkuym7GhMEKE66gagjBZqUXumKYCVLShRZcrTQwBhxzpQhhAE3NmpqvWCN4Xi3oSfF879u6kORY3iRz-XBJcMWqTCz3RBPUlWyj3eZcZFBW_t0IcS1V7Kx2IOsFUcPBlSkFU7QUVJvacEUMLWmjy-z1djytX22h0UPJlJuYTv94u5HrsJOVIFW5GMJ9NRrE8L2H1MmtTRqcUx5Cv49bEMw4y-iLf9C7sxuptcoJWG_CcOGDqTytKMe03nvN76Dy08DW6tyLJjfLVPB6IshMl3tprfqU5PLTx_9nL79O2ZcH7Cb3ZLdJwfVDs6UpyPagjiGlCOa2yATLYZRuqiGHUZLjKGXZs8MLuhXdzA79AxwhHYU</recordid><startdate>20180424</startdate><enddate>20180424</enddate><creator>Ostadal, Petr</creator><creator>Mlcek, Mikulas</creator><creator>Gorhan, Holger</creator><creator>Simundic, Ivo</creator><creator>Strunina, Svitlana</creator><creator>Hrachovina, Matej</creator><creator>Krüger, Andreas</creator><creator>Vondrakova, Dagmar</creator><creator>Janotka, Marek</creator><creator>Hala, Pavel</creator><creator>Mates, Martin</creator><creator>Ostadal, Martin</creator><creator>Leiter, James C</creator><creator>Kittnar, Otomar</creator><creator>Neuzil, Petr</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9550-222X</orcidid></search><sort><creationdate>20180424</creationdate><title>Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock</title><author>Ostadal, Petr ; Mlcek, Mikulas ; Gorhan, Holger ; Simundic, Ivo ; Strunina, Svitlana ; Hrachovina, Matej ; Krüger, Andreas ; Vondrakova, Dagmar ; Janotka, Marek ; Hala, Pavel ; Mates, Martin ; Ostadal, Martin ; Leiter, James C ; Kittnar, Otomar ; Neuzil, Petr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-49f0a016ae5d110fbc7c540491237c96abce44e606aa114eed84d86b4d964ee73</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Anesthesia</topic><topic>Artificial blood circulation</topic><topic>Biology and Life Sciences</topic><topic>Blood pressure</topic><topic>Body weight</topic><topic>Cardiac output</topic><topic>Cardiogenic shock</topic><topic>Care and treatment</topic><topic>Catheters</topic><topic>Diastolic pressure</topic><topic>Echocardiography</topic><topic>EKG</topic><topic>Electrocardiography</topic><topic>Heart</topic><topic>Hemodynamics</topic><topic>Hypoxia</topic><topic>Implantation</topic><topic>Laboratory animals</topic><topic>Life support systems</topic><topic>Livestock</topic><topic>Medical instruments</topic><topic>Medicine</topic><topic>Medicine and Health Sciences</topic><topic>Methods</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Pulmonary artery</topic><topic>Research and Analysis Methods</topic><topic>Shock</topic><topic>Stroke</topic><topic>Stroke volume</topic><topic>Studies</topic><topic>Swine</topic><topic>Systolic pressure</topic><topic>Thoracic surgery</topic><topic>Ventilation</topic><topic>Ventilators</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ostadal, Petr</creatorcontrib><creatorcontrib>Mlcek, Mikulas</creatorcontrib><creatorcontrib>Gorhan, Holger</creatorcontrib><creatorcontrib>Simundic, Ivo</creatorcontrib><creatorcontrib>Strunina, Svitlana</creatorcontrib><creatorcontrib>Hrachovina, Matej</creatorcontrib><creatorcontrib>Krüger, Andreas</creatorcontrib><creatorcontrib>Vondrakova, Dagmar</creatorcontrib><creatorcontrib>Janotka, Marek</creatorcontrib><creatorcontrib>Hala, Pavel</creatorcontrib><creatorcontrib>Mates, Martin</creatorcontrib><creatorcontrib>Ostadal, Martin</creatorcontrib><creatorcontrib>Leiter, James C</creatorcontrib><creatorcontrib>Kittnar, Otomar</creatorcontrib><creatorcontrib>Neuzil, Petr</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ostadal, Petr</au><au>Mlcek, Mikulas</au><au>Gorhan, Holger</au><au>Simundic, Ivo</au><au>Strunina, Svitlana</au><au>Hrachovina, Matej</au><au>Krüger, Andreas</au><au>Vondrakova, Dagmar</au><au>Janotka, Marek</au><au>Hala, Pavel</au><au>Mates, Martin</au><au>Ostadal, Martin</au><au>Leiter, James C</au><au>Kittnar, Otomar</au><au>Neuzil, Petr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-04-24</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>e0196321</spage><epage>e0196321</epage><pages>e0196321-e0196321</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Veno-arterial extracorporeal life support (ECLS) is increasingly being used to treat rapidly progressing or severe cardiogenic shock. However, it has been repeatedly shown that increased afterload associated with ECLS significantly diminishes left ventricular (LV) performance. The objective of the present study was to compare LV function and coronary flow during standard continuous-flow ECLS support and electrocardiogram (ECG)-synchronized pulsatile ECLS flow in a porcine model of cardiogenic shock. Sixteen female swine (mean body weight 45 kg) underwent ECLS implantation under general anesthesia and artificial ventilation. Subsequently, acute cardiogenic shock, with documented signs of tissue hypoperfusion, was induced by initiating global myocardial hypoxia. Hemodynamic cardiac performance variables and coronary flow were then measured at different rates of continuous or pulsatile ECLS flow (ranging from 1 L/min to 4 L/min) using arterial and venous catheters, a pulmonary artery catheter, an LV pressure-volume loop catheter, and a Doppler coronary guide-wire. Myocardial hypoxia resulted in declines in mean cardiac output to 1.7±0.7 L/min, systolic blood pressure to 64±22 mmHg, and LV ejection fraction (LVEF) to 22±7%. Synchronized pulsatile flow was associated with a significant reduction in LV end-systolic volume by 6.2 mL (6.7%), an increase in LV stroke volume by 5.0 mL (17.4%), higher LVEF by 4.5% (18.8% relative), cardiac output by 0.37 L/min (17.1%), and mean arterial pressure by 3.0 mmHg (5.5%) when compared with continuous ECLS flow at all ECLS flow rates (P&lt;0.05). At selected ECLS flow rates, pulsatile flow also reduced LV end-diastolic pressure, end-diastolic volume, and systolic pressure. ECG-synchronized pulsatile flow was also associated with significantly increased (7% to 22%) coronary flow at all ECLS flow rates. ECG-synchronized pulsatile ECLS flow preserved LV function and coronary flow compared with standard continuous-flow ECLS in a porcine model of cardiogenic shock.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29689088</pmid><doi>10.1371/journal.pone.0196321</doi><tpages>e0196321</tpages><orcidid>https://orcid.org/0000-0001-9550-222X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-04, Vol.13 (4), p.e0196321-e0196321
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2030210545
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Analysis
Anesthesia
Artificial blood circulation
Biology and Life Sciences
Blood pressure
Body weight
Cardiac output
Cardiogenic shock
Care and treatment
Catheters
Diastolic pressure
Echocardiography
EKG
Electrocardiography
Heart
Hemodynamics
Hypoxia
Implantation
Laboratory animals
Life support systems
Livestock
Medical instruments
Medicine
Medicine and Health Sciences
Methods
Physical Sciences
Physiology
Pulmonary artery
Research and Analysis Methods
Shock
Stroke
Stroke volume
Studies
Swine
Systolic pressure
Thoracic surgery
Ventilation
Ventilators
Ventricle
title Electrocardiogram-synchronized pulsatile extracorporeal life support preserves left ventricular function and coronary flow in a porcine model of cardiogenic shock
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T06%3A26%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Electrocardiogram-synchronized%20pulsatile%20extracorporeal%20life%20support%20preserves%20left%20ventricular%20function%20and%20coronary%20flow%20in%20a%20porcine%20model%20of%20cardiogenic%20shock&rft.jtitle=PloS%20one&rft.au=Ostadal,%20Petr&rft.date=2018-04-24&rft.volume=13&rft.issue=4&rft.spage=e0196321&rft.epage=e0196321&rft.pages=e0196321-e0196321&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0196321&rft_dat=%3Cgale_plos_%3EA536038464%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2030210545&rft_id=info:pmid/29689088&rft_galeid=A536038464&rft_doaj_id=oai_doaj_org_article_871a12375f294a3293cf8f6a1f323dc2&rfr_iscdi=true