The speed of parietal theta frequency drives visuospatial working memory capacity

The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2018-03, Vol.16 (3), p.e2005348-e2005348
Hauptverfasser: Wolinski, Nina, Cooper, Nicholas R, Sauseng, Paul, Romei, Vincenzo
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2005348
container_issue 3
container_start_page e2005348
container_title PLoS biology
container_volume 16
creator Wolinski, Nina
Cooper, Nicholas R
Sauseng, Paul
Romei, Vincenzo
description The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.
doi_str_mv 10.1371/journal.pbio.2005348
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025699283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351948</galeid><doaj_id>oai_doaj_org_article_410e69e0149249c7ac4c7225d7c908d8</doaj_id><sourcerecordid>A533351948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfxM7AtSVfFYqaICClfLcSa7XpI42Mm2--1x2LRqUA8gW7I1_s1_Hp4keY7REtMcv926wbe6XnaFdUuCEKdMPEiOMWd8kQvBH965HyVPQtgiRIgk4nFyRCSnggp2nHy53EAaOoAydVXaaW-h13Xab-KRVh5-DdCafVp6u4OQ7mwYXOh0byNz5fxP267TBhrn96nRnTa23z9NHlW6DvBsOk-S7x_eX559WpxffFydnZ4vTJ7hfgGkkEITY0Qhc1YVyJSYEkQNL3KGMePEZMyQrKhERXiWcc4qzQgGRDXOCk5PkpcH3a52QU3dCIqgSMtYJo3E6kCUTm9V522j_V45bdUfg_NrpX1vTQ2KYQSZBISZJEyaXBtmckJ4mRuJRCmi1rsp2lA0UBpoe6_rmej8pbUbtXY7xUUmBENR4PUk4F1sauhVY4OButYtuGHMGzPM4s4i-uov9P7qJmqtYwG2rVyMa0ZRdcoppRxLNua9vIeKq4TGGtdCZaN95vBm5hCZHq77tR5CUKtvX_-D_fzv7MWPOcsOrPEuBA_VbZ8xUuPw3zREjcOvpuGPbi_u_tGt082009_KVP4T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025699283</pqid></control><display><type>article</type><title>The speed of parietal theta frequency drives visuospatial working memory capacity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Wolinski, Nina ; Cooper, Nicholas R ; Sauseng, Paul ; Romei, Vincenzo</creator><creatorcontrib>Wolinski, Nina ; Cooper, Nicholas R ; Sauseng, Paul ; Romei, Vincenzo</creatorcontrib><description>The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (&gt;30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2005348</identifier><identifier>PMID: 29538384</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Biology and Life Sciences ; Brain ; Electric properties ; Female ; Frequency dependence ; Gamma phase ; Humans ; Hypotheses ; Male ; Medicine and Health Sciences ; Memory ; Memory, Short-Term ; Parietal Lobe - physiology ; Physical Sciences ; Physiological aspects ; Receptive field ; Research and Analysis Methods ; Short Reports ; Short term memory ; Social Sciences ; Spatial memory ; Stimulation ; Theta Rhythm - physiology ; Theta rhythms ; Visual Perception ; Visual task performance</subject><ispartof>PLoS biology, 2018-03, Vol.16 (3), p.e2005348-e2005348</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wolinski N, Cooper NR, Sauseng P, Romei V (2018) The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol 16(3): e2005348. https://doi.org/10.1371/journal.pbio.2005348</rights><rights>2018 Wolinski et al 2018 Wolinski et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wolinski N, Cooper NR, Sauseng P, Romei V (2018) The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol 16(3): e2005348. https://doi.org/10.1371/journal.pbio.2005348</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</citedby><cites>FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</cites><orcidid>0000-0003-1214-2316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868840/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868840/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29538384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolinski, Nina</creatorcontrib><creatorcontrib>Cooper, Nicholas R</creatorcontrib><creatorcontrib>Sauseng, Paul</creatorcontrib><creatorcontrib>Romei, Vincenzo</creatorcontrib><title>The speed of parietal theta frequency drives visuospatial working memory capacity</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (&gt;30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.</description><subject>Adult</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Electric properties</subject><subject>Female</subject><subject>Frequency dependence</subject><subject>Gamma phase</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Memory, Short-Term</subject><subject>Parietal Lobe - physiology</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Receptive field</subject><subject>Research and Analysis Methods</subject><subject>Short Reports</subject><subject>Short term memory</subject><subject>Social Sciences</subject><subject>Spatial memory</subject><subject>Stimulation</subject><subject>Theta Rhythm - physiology</subject><subject>Theta rhythms</subject><subject>Visual Perception</subject><subject>Visual task performance</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfxM7AtSVfFYqaICClfLcSa7XpI42Mm2--1x2LRqUA8gW7I1_s1_Hp4keY7REtMcv926wbe6XnaFdUuCEKdMPEiOMWd8kQvBH965HyVPQtgiRIgk4nFyRCSnggp2nHy53EAaOoAydVXaaW-h13Xab-KRVh5-DdCafVp6u4OQ7mwYXOh0byNz5fxP267TBhrn96nRnTa23z9NHlW6DvBsOk-S7x_eX559WpxffFydnZ4vTJ7hfgGkkEITY0Qhc1YVyJSYEkQNL3KGMePEZMyQrKhERXiWcc4qzQgGRDXOCk5PkpcH3a52QU3dCIqgSMtYJo3E6kCUTm9V522j_V45bdUfg_NrpX1vTQ2KYQSZBISZJEyaXBtmckJ4mRuJRCmi1rsp2lA0UBpoe6_rmej8pbUbtXY7xUUmBENR4PUk4F1sauhVY4OButYtuGHMGzPM4s4i-uov9P7qJmqtYwG2rVyMa0ZRdcoppRxLNua9vIeKq4TGGtdCZaN95vBm5hCZHq77tR5CUKtvX_-D_fzv7MWPOcsOrPEuBA_VbZ8xUuPw3zREjcOvpuGPbi_u_tGt082009_KVP4T</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Wolinski, Nina</creator><creator>Cooper, Nicholas R</creator><creator>Sauseng, Paul</creator><creator>Romei, Vincenzo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1214-2316</orcidid></search><sort><creationdate>20180314</creationdate><title>The speed of parietal theta frequency drives visuospatial working memory capacity</title><author>Wolinski, Nina ; Cooper, Nicholas R ; Sauseng, Paul ; Romei, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Electric properties</topic><topic>Female</topic><topic>Frequency dependence</topic><topic>Gamma phase</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Memory, Short-Term</topic><topic>Parietal Lobe - physiology</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Receptive field</topic><topic>Research and Analysis Methods</topic><topic>Short Reports</topic><topic>Short term memory</topic><topic>Social Sciences</topic><topic>Spatial memory</topic><topic>Stimulation</topic><topic>Theta Rhythm - physiology</topic><topic>Theta rhythms</topic><topic>Visual Perception</topic><topic>Visual task performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolinski, Nina</creatorcontrib><creatorcontrib>Cooper, Nicholas R</creatorcontrib><creatorcontrib>Sauseng, Paul</creatorcontrib><creatorcontrib>Romei, Vincenzo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolinski, Nina</au><au>Cooper, Nicholas R</au><au>Sauseng, Paul</au><au>Romei, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The speed of parietal theta frequency drives visuospatial working memory capacity</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>e2005348</spage><epage>e2005348</epage><pages>e2005348-e2005348</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (&gt;30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29538384</pmid><doi>10.1371/journal.pbio.2005348</doi><orcidid>https://orcid.org/0000-0003-1214-2316</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2018-03, Vol.16 (3), p.e2005348-e2005348
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2025699283
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adult
Biology and Life Sciences
Brain
Electric properties
Female
Frequency dependence
Gamma phase
Humans
Hypotheses
Male
Medicine and Health Sciences
Memory
Memory, Short-Term
Parietal Lobe - physiology
Physical Sciences
Physiological aspects
Receptive field
Research and Analysis Methods
Short Reports
Short term memory
Social Sciences
Spatial memory
Stimulation
Theta Rhythm - physiology
Theta rhythms
Visual Perception
Visual task performance
title The speed of parietal theta frequency drives visuospatial working memory capacity
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20speed%20of%20parietal%20theta%20frequency%20drives%20visuospatial%20working%20memory%20capacity&rft.jtitle=PLoS%20biology&rft.au=Wolinski,%20Nina&rft.date=2018-03-14&rft.volume=16&rft.issue=3&rft.spage=e2005348&rft.epage=e2005348&rft.pages=e2005348-e2005348&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2005348&rft_dat=%3Cgale_plos_%3EA533351948%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025699283&rft_id=info:pmid/29538384&rft_galeid=A533351948&rft_doaj_id=oai_doaj_org_article_410e69e0149249c7ac4c7225d7c908d8&rfr_iscdi=true