The speed of parietal theta frequency drives visuospatial working memory capacity
The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2018-03, Vol.16 (3), p.e2005348-e2005348 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2005348 |
---|---|
container_issue | 3 |
container_start_page | e2005348 |
container_title | PLoS biology |
container_volume | 16 |
creator | Wolinski, Nina Cooper, Nicholas R Sauseng, Paul Romei, Vincenzo |
description | The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity. |
doi_str_mv | 10.1371/journal.pbio.2005348 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025699283</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351948</galeid><doaj_id>oai_doaj_org_article_410e69e0149249c7ac4c7225d7c908d8</doaj_id><sourcerecordid>A533351948</sourcerecordid><originalsourceid>FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</originalsourceid><addsrcrecordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfxM7AtSVfFYqaICClfLcSa7XpI42Mm2--1x2LRqUA8gW7I1_s1_Hp4keY7REtMcv926wbe6XnaFdUuCEKdMPEiOMWd8kQvBH965HyVPQtgiRIgk4nFyRCSnggp2nHy53EAaOoAydVXaaW-h13Xab-KRVh5-DdCafVp6u4OQ7mwYXOh0byNz5fxP267TBhrn96nRnTa23z9NHlW6DvBsOk-S7x_eX559WpxffFydnZ4vTJ7hfgGkkEITY0Qhc1YVyJSYEkQNL3KGMePEZMyQrKhERXiWcc4qzQgGRDXOCk5PkpcH3a52QU3dCIqgSMtYJo3E6kCUTm9V522j_V45bdUfg_NrpX1vTQ2KYQSZBISZJEyaXBtmckJ4mRuJRCmi1rsp2lA0UBpoe6_rmej8pbUbtXY7xUUmBENR4PUk4F1sauhVY4OButYtuGHMGzPM4s4i-uov9P7qJmqtYwG2rVyMa0ZRdcoppRxLNua9vIeKq4TGGtdCZaN95vBm5hCZHq77tR5CUKtvX_-D_fzv7MWPOcsOrPEuBA_VbZ8xUuPw3zREjcOvpuGPbi_u_tGt082009_KVP4T</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025699283</pqid></control><display><type>article</type><title>The speed of parietal theta frequency drives visuospatial working memory capacity</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Wolinski, Nina ; Cooper, Nicholas R ; Sauseng, Paul ; Romei, Vincenzo</creator><creatorcontrib>Wolinski, Nina ; Cooper, Nicholas R ; Sauseng, Paul ; Romei, Vincenzo</creatorcontrib><description>The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2005348</identifier><identifier>PMID: 29538384</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adult ; Biology and Life Sciences ; Brain ; Electric properties ; Female ; Frequency dependence ; Gamma phase ; Humans ; Hypotheses ; Male ; Medicine and Health Sciences ; Memory ; Memory, Short-Term ; Parietal Lobe - physiology ; Physical Sciences ; Physiological aspects ; Receptive field ; Research and Analysis Methods ; Short Reports ; Short term memory ; Social Sciences ; Spatial memory ; Stimulation ; Theta Rhythm - physiology ; Theta rhythms ; Visual Perception ; Visual task performance</subject><ispartof>PLoS biology, 2018-03, Vol.16 (3), p.e2005348-e2005348</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wolinski N, Cooper NR, Sauseng P, Romei V (2018) The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol 16(3): e2005348. https://doi.org/10.1371/journal.pbio.2005348</rights><rights>2018 Wolinski et al 2018 Wolinski et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Wolinski N, Cooper NR, Sauseng P, Romei V (2018) The speed of parietal theta frequency drives visuospatial working memory capacity. PLoS Biol 16(3): e2005348. https://doi.org/10.1371/journal.pbio.2005348</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</citedby><cites>FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</cites><orcidid>0000-0003-1214-2316</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868840/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5868840/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29538384$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wolinski, Nina</creatorcontrib><creatorcontrib>Cooper, Nicholas R</creatorcontrib><creatorcontrib>Sauseng, Paul</creatorcontrib><creatorcontrib>Romei, Vincenzo</creatorcontrib><title>The speed of parietal theta frequency drives visuospatial working memory capacity</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.</description><subject>Adult</subject><subject>Biology and Life Sciences</subject><subject>Brain</subject><subject>Electric properties</subject><subject>Female</subject><subject>Frequency dependence</subject><subject>Gamma phase</subject><subject>Humans</subject><subject>Hypotheses</subject><subject>Male</subject><subject>Medicine and Health Sciences</subject><subject>Memory</subject><subject>Memory, Short-Term</subject><subject>Parietal Lobe - physiology</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Receptive field</subject><subject>Research and Analysis Methods</subject><subject>Short Reports</subject><subject>Short term memory</subject><subject>Social Sciences</subject><subject>Spatial memory</subject><subject>Stimulation</subject><subject>Theta Rhythm - physiology</subject><subject>Theta rhythms</subject><subject>Visual Perception</subject><subject>Visual task performance</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkktv1DAQxyMEoqXwDRBE4gKHXfxM7AtSVfFYqaICClfLcSa7XpI42Mm2--1x2LRqUA8gW7I1_s1_Hp4keY7REtMcv926wbe6XnaFdUuCEKdMPEiOMWd8kQvBH965HyVPQtgiRIgk4nFyRCSnggp2nHy53EAaOoAydVXaaW-h13Xab-KRVh5-DdCafVp6u4OQ7mwYXOh0byNz5fxP267TBhrn96nRnTa23z9NHlW6DvBsOk-S7x_eX559WpxffFydnZ4vTJ7hfgGkkEITY0Qhc1YVyJSYEkQNL3KGMePEZMyQrKhERXiWcc4qzQgGRDXOCk5PkpcH3a52QU3dCIqgSMtYJo3E6kCUTm9V522j_V45bdUfg_NrpX1vTQ2KYQSZBISZJEyaXBtmckJ4mRuJRCmi1rsp2lA0UBpoe6_rmej8pbUbtXY7xUUmBENR4PUk4F1sauhVY4OButYtuGHMGzPM4s4i-uov9P7qJmqtYwG2rVyMa0ZRdcoppRxLNua9vIeKq4TGGtdCZaN95vBm5hCZHq77tR5CUKtvX_-D_fzv7MWPOcsOrPEuBA_VbZ8xUuPw3zREjcOvpuGPbi_u_tGt082009_KVP4T</recordid><startdate>20180314</startdate><enddate>20180314</enddate><creator>Wolinski, Nina</creator><creator>Cooper, Nicholas R</creator><creator>Sauseng, Paul</creator><creator>Romei, Vincenzo</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1214-2316</orcidid></search><sort><creationdate>20180314</creationdate><title>The speed of parietal theta frequency drives visuospatial working memory capacity</title><author>Wolinski, Nina ; Cooper, Nicholas R ; Sauseng, Paul ; Romei, Vincenzo</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c761t-e2b98a2cc8b974fb0cd13203c5b7411452c64c26bf8f2566554fa421e03a16b53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adult</topic><topic>Biology and Life Sciences</topic><topic>Brain</topic><topic>Electric properties</topic><topic>Female</topic><topic>Frequency dependence</topic><topic>Gamma phase</topic><topic>Humans</topic><topic>Hypotheses</topic><topic>Male</topic><topic>Medicine and Health Sciences</topic><topic>Memory</topic><topic>Memory, Short-Term</topic><topic>Parietal Lobe - physiology</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Receptive field</topic><topic>Research and Analysis Methods</topic><topic>Short Reports</topic><topic>Short term memory</topic><topic>Social Sciences</topic><topic>Spatial memory</topic><topic>Stimulation</topic><topic>Theta Rhythm - physiology</topic><topic>Theta rhythms</topic><topic>Visual Perception</topic><topic>Visual task performance</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wolinski, Nina</creatorcontrib><creatorcontrib>Cooper, Nicholas R</creatorcontrib><creatorcontrib>Sauseng, Paul</creatorcontrib><creatorcontrib>Romei, Vincenzo</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wolinski, Nina</au><au>Cooper, Nicholas R</au><au>Sauseng, Paul</au><au>Romei, Vincenzo</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The speed of parietal theta frequency drives visuospatial working memory capacity</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-03-14</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>e2005348</spage><epage>e2005348</epage><pages>e2005348-e2005348</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>The speed of theta brain oscillatory activity is thought to play a key role in determining working memory (WM) capacity. Individual differences in the length of a theta cycle (ranging between 4 and 7 Hz) might determine how many gamma cycles (>30 Hz) can be nested into a theta wave. Gamma cycles are thought to represent single memory items; therefore, this interplay could determine individual memory capacity. We directly tested this hypothesis by means of parietal transcranial alternating current stimulation (tACS) set at slower (4 Hz) and faster (7 Hz) theta frequencies during a visuospatial WM paradigm. Accordingly, we found that 4-Hz tACS enhanced WM capacity, while 7-Hz tACS reduced WM capacity. Notably, these effects were found only for items presented to the hemifield contralateral to the stimulation site. This provides causal evidence for a frequency-dependent and spatially specific organization of WM storage, supporting the theta-gamma phase coupling theory of WM capacity.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29538384</pmid><doi>10.1371/journal.pbio.2005348</doi><orcidid>https://orcid.org/0000-0003-1214-2316</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2018-03, Vol.16 (3), p.e2005348-e2005348 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2025699283 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adult Biology and Life Sciences Brain Electric properties Female Frequency dependence Gamma phase Humans Hypotheses Male Medicine and Health Sciences Memory Memory, Short-Term Parietal Lobe - physiology Physical Sciences Physiological aspects Receptive field Research and Analysis Methods Short Reports Short term memory Social Sciences Spatial memory Stimulation Theta Rhythm - physiology Theta rhythms Visual Perception Visual task performance |
title | The speed of parietal theta frequency drives visuospatial working memory capacity |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T06%3A49%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20speed%20of%20parietal%20theta%20frequency%20drives%20visuospatial%20working%20memory%20capacity&rft.jtitle=PLoS%20biology&rft.au=Wolinski,%20Nina&rft.date=2018-03-14&rft.volume=16&rft.issue=3&rft.spage=e2005348&rft.epage=e2005348&rft.pages=e2005348-e2005348&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2005348&rft_dat=%3Cgale_plos_%3EA533351948%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025699283&rft_id=info:pmid/29538384&rft_galeid=A533351948&rft_doaj_id=oai_doaj_org_article_410e69e0149249c7ac4c7225d7c908d8&rfr_iscdi=true |