Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current
Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spin...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2018-03, Vol.16 (3), p.e2004892 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 3 |
container_start_page | e2004892 |
container_title | PLoS biology |
container_volume | 16 |
creator | Thompson, Ammon Infield, Daniel T Smith, Adam R Smith, G Troy Ahern, Christopher A Zakon, Harold H |
description | Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene. |
doi_str_mv | 10.1371/journal.pbio.2004892 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025699125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351944</galeid><doaj_id>oai_doaj_org_article_b3f1407423d5432897bc8107e4845514</doaj_id><sourcerecordid>A533351944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</originalsourceid><addsrcrecordid>eNqVkl1rHCEUhofS0qRp_0FpB3LVi9mqo6PeFELox0JoIP24Fcc5zrrMjlt1QvPv63YnSxZaaPFCz_F5X4-HUxQvMVrgmuO3az-FUQ-Lbev8giBEhSSPilPMKKu4EOzxg_NJ8SzGNUKESCKeFidEMkE5FqfF3Y3euq6EWz9Myfmx9LbUZY6S7qHqdYKujL5z06Y0Kz2OMJQ9jFC6MWODGyFjOw0MYFJwprQursoBdBfL5DOzhRBdTDCmg88UQg6fF0-sHiK8mPez4tuH918vP1VX1x-XlxdXlWkkS5WFjiNsEMu1N9xywC02EhvWcNESihoBbdMZ3TYWY2Qpo20tGbRCGCGssfVZ8Xrvux18VHPXoiKIsEZKTFgmlnui83qttsFtdLhTXjv1O-FDr3RIzgyg2tpiijgldcdoTYTkrREYcaCCMoZp9no3vza1G-hM_mjQw5Hp8c3oVqr3t4oJjiSV2eB8Ngj-xwQx_aXkmep1rsqN1mczs3HRqAtW1zXDku6KWfyByquDjTN-BOty_kjw5kiQmQQ_U6-nGNXyy81_sJ__nb3-fszSPWuCjzGAPTQPI7Wb_PuGqN3kq3nys-zVw8YfRPejXv8CFJr-Jg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025699125</pqid></control><display><type>article</type><title>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Thompson, Ammon ; Infield, Daniel T ; Smith, Adam R ; Smith, G Troy ; Ahern, Christopher A ; Zakon, Harold H</creator><creatorcontrib>Thompson, Ammon ; Infield, Daniel T ; Smith, Adam R ; Smith, G Troy ; Ahern, Christopher A ; Zakon, Harold H</creatorcontrib><description>Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2004892</identifier><identifier>PMID: 29584718</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adults ; Amino Acid Substitution ; Amino acids ; Animal behavior ; Animal Communication ; Animals ; Axons ; Bioinformatics ; Biology ; Biology and Life Sciences ; Biophysics ; Computer and Information Sciences ; Cytochrome ; Deactivation ; Electric Fish - genetics ; Electric instruments ; Electric Organ - physiology ; Electric organs ; Electric organs in fishes ; Evolution ; Evolution & development ; Evolution, Molecular ; Fish ; Funding ; Gene Duplication ; Gene expression ; Gene Expression Profiling ; Inactivation ; Medicine and Health Sciences ; Models, Molecular ; Muscles ; Musculoskeletal system ; Natural history ; Neurons ; Neurosciences ; Organs ; Phenotypes ; Phylogenetics ; Physical Sciences ; Physiology ; Protein Domains ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Reproduction (copying) ; Research and Analysis Methods ; Sequence Analysis, Protein ; Short Reports ; Skeletal muscle ; Sodium ; Sodium channels ; Sodium channels (voltage-gated) ; Spinal cord ; Spinal Cord - metabolism ; Supervision ; Voltage-Gated Sodium Channels - chemistry ; Voltage-Gated Sodium Channels - genetics</subject><ispartof>PLoS biology, 2018-03, Vol.16 (3), p.e2004892</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thompson A, Infield DT, Smith AR, Smith GT, Ahern CA, Zakon HH (2018) Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biol 16(3): e2004892. https://doi.org/10.1371/journal.pbio.2004892</rights><rights>2018 Thompson et al 2018 Thompson et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thompson A, Infield DT, Smith AR, Smith GT, Ahern CA, Zakon HH (2018) Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biol 16(3): e2004892. https://doi.org/10.1371/journal.pbio.2004892</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</citedby><cites>FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</cites><orcidid>0000-0003-1825-4685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870949/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29584718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Ammon</creatorcontrib><creatorcontrib>Infield, Daniel T</creatorcontrib><creatorcontrib>Smith, Adam R</creatorcontrib><creatorcontrib>Smith, G Troy</creatorcontrib><creatorcontrib>Ahern, Christopher A</creatorcontrib><creatorcontrib>Zakon, Harold H</creatorcontrib><title>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.</description><subject>Adults</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Animal behavior</subject><subject>Animal Communication</subject><subject>Animals</subject><subject>Axons</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Computer and Information Sciences</subject><subject>Cytochrome</subject><subject>Deactivation</subject><subject>Electric Fish - genetics</subject><subject>Electric instruments</subject><subject>Electric Organ - physiology</subject><subject>Electric organs</subject><subject>Electric organs in fishes</subject><subject>Evolution</subject><subject>Evolution & development</subject><subject>Evolution, Molecular</subject><subject>Fish</subject><subject>Funding</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Inactivation</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Natural history</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Organs</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Protein Domains</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Reproduction (copying)</subject><subject>Research and Analysis Methods</subject><subject>Sequence Analysis, Protein</subject><subject>Short Reports</subject><subject>Skeletal muscle</subject><subject>Sodium</subject><subject>Sodium channels</subject><subject>Sodium channels (voltage-gated)</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Supervision</subject><subject>Voltage-Gated Sodium Channels - chemistry</subject><subject>Voltage-Gated Sodium Channels - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rHCEUhofS0qRp_0FpB3LVi9mqo6PeFELox0JoIP24Fcc5zrrMjlt1QvPv63YnSxZaaPFCz_F5X4-HUxQvMVrgmuO3az-FUQ-Lbev8giBEhSSPilPMKKu4EOzxg_NJ8SzGNUKESCKeFidEMkE5FqfF3Y3euq6EWz9Myfmx9LbUZY6S7qHqdYKujL5z06Y0Kz2OMJQ9jFC6MWODGyFjOw0MYFJwprQursoBdBfL5DOzhRBdTDCmg88UQg6fF0-sHiK8mPez4tuH918vP1VX1x-XlxdXlWkkS5WFjiNsEMu1N9xywC02EhvWcNESihoBbdMZ3TYWY2Qpo20tGbRCGCGssfVZ8Xrvux18VHPXoiKIsEZKTFgmlnui83qttsFtdLhTXjv1O-FDr3RIzgyg2tpiijgldcdoTYTkrREYcaCCMoZp9no3vza1G-hM_mjQw5Hp8c3oVqr3t4oJjiSV2eB8Ngj-xwQx_aXkmep1rsqN1mczs3HRqAtW1zXDku6KWfyByquDjTN-BOty_kjw5kiQmQQ_U6-nGNXyy81_sJ__nb3-fszSPWuCjzGAPTQPI7Wb_PuGqN3kq3nys-zVw8YfRPejXv8CFJr-Jg</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Thompson, Ammon</creator><creator>Infield, Daniel T</creator><creator>Smith, Adam R</creator><creator>Smith, G Troy</creator><creator>Ahern, Christopher A</creator><creator>Zakon, Harold H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1825-4685</orcidid></search><sort><creationdate>20180327</creationdate><title>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</title><author>Thompson, Ammon ; Infield, Daniel T ; Smith, Adam R ; Smith, G Troy ; Ahern, Christopher A ; Zakon, Harold H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adults</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Animal behavior</topic><topic>Animal Communication</topic><topic>Animals</topic><topic>Axons</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Computer and Information Sciences</topic><topic>Cytochrome</topic><topic>Deactivation</topic><topic>Electric Fish - genetics</topic><topic>Electric instruments</topic><topic>Electric Organ - physiology</topic><topic>Electric organs</topic><topic>Electric organs in fishes</topic><topic>Evolution</topic><topic>Evolution & development</topic><topic>Evolution, Molecular</topic><topic>Fish</topic><topic>Funding</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Inactivation</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Natural history</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Organs</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Protein Domains</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Reproduction (copying)</topic><topic>Research and Analysis Methods</topic><topic>Sequence Analysis, Protein</topic><topic>Short Reports</topic><topic>Skeletal muscle</topic><topic>Sodium</topic><topic>Sodium channels</topic><topic>Sodium channels (voltage-gated)</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Supervision</topic><topic>Voltage-Gated Sodium Channels - chemistry</topic><topic>Voltage-Gated Sodium Channels - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Ammon</creatorcontrib><creatorcontrib>Infield, Daniel T</creatorcontrib><creatorcontrib>Smith, Adam R</creatorcontrib><creatorcontrib>Smith, G Troy</creatorcontrib><creatorcontrib>Ahern, Christopher A</creatorcontrib><creatorcontrib>Zakon, Harold H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Ammon</au><au>Infield, Daniel T</au><au>Smith, Adam R</au><au>Smith, G Troy</au><au>Ahern, Christopher A</au><au>Zakon, Harold H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>e2004892</spage><pages>e2004892-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29584718</pmid><doi>10.1371/journal.pbio.2004892</doi><orcidid>https://orcid.org/0000-0003-1825-4685</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2018-03, Vol.16 (3), p.e2004892 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2025699125 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS) |
subjects | Adults Amino Acid Substitution Amino acids Animal behavior Animal Communication Animals Axons Bioinformatics Biology Biology and Life Sciences Biophysics Computer and Information Sciences Cytochrome Deactivation Electric Fish - genetics Electric instruments Electric Organ - physiology Electric organs Electric organs in fishes Evolution Evolution & development Evolution, Molecular Fish Funding Gene Duplication Gene expression Gene Expression Profiling Inactivation Medicine and Health Sciences Models, Molecular Muscles Musculoskeletal system Natural history Neurons Neurosciences Organs Phenotypes Phylogenetics Physical Sciences Physiology Protein Domains Protein Isoforms - genetics Protein Isoforms - metabolism Reproduction (copying) Research and Analysis Methods Sequence Analysis, Protein Short Reports Skeletal muscle Sodium Sodium channels Sodium channels (voltage-gated) Spinal cord Spinal Cord - metabolism Supervision Voltage-Gated Sodium Channels - chemistry Voltage-Gated Sodium Channels - genetics |
title | Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20evolution%20of%20a%20voltage-gated%20sodium%20channel%20gene%20in%20a%20lineage%20of%20electric%20fish%20leads%20to%20a%20persistent%20sodium%20current&rft.jtitle=PLoS%20biology&rft.au=Thompson,%20Ammon&rft.date=2018-03-27&rft.volume=16&rft.issue=3&rft.spage=e2004892&rft.pages=e2004892-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2004892&rft_dat=%3Cgale_plos_%3EA533351944%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025699125&rft_id=info:pmid/29584718&rft_galeid=A533351944&rft_doaj_id=oai_doaj_org_article_b3f1407423d5432897bc8107e4845514&rfr_iscdi=true |