Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current

Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spin...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2018-03, Vol.16 (3), p.e2004892
Hauptverfasser: Thompson, Ammon, Infield, Daniel T, Smith, Adam R, Smith, G Troy, Ahern, Christopher A, Zakon, Harold H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page
container_issue 3
container_start_page e2004892
container_title PLoS biology
container_volume 16
creator Thompson, Ammon
Infield, Daniel T
Smith, Adam R
Smith, G Troy
Ahern, Christopher A
Zakon, Harold H
description Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.
doi_str_mv 10.1371/journal.pbio.2004892
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2025699125</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533351944</galeid><doaj_id>oai_doaj_org_article_b3f1407423d5432897bc8107e4845514</doaj_id><sourcerecordid>A533351944</sourcerecordid><originalsourceid>FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</originalsourceid><addsrcrecordid>eNqVkl1rHCEUhofS0qRp_0FpB3LVi9mqo6PeFELox0JoIP24Fcc5zrrMjlt1QvPv63YnSxZaaPFCz_F5X4-HUxQvMVrgmuO3az-FUQ-Lbev8giBEhSSPilPMKKu4EOzxg_NJ8SzGNUKESCKeFidEMkE5FqfF3Y3euq6EWz9Myfmx9LbUZY6S7qHqdYKujL5z06Y0Kz2OMJQ9jFC6MWODGyFjOw0MYFJwprQursoBdBfL5DOzhRBdTDCmg88UQg6fF0-sHiK8mPez4tuH918vP1VX1x-XlxdXlWkkS5WFjiNsEMu1N9xywC02EhvWcNESihoBbdMZ3TYWY2Qpo20tGbRCGCGssfVZ8Xrvux18VHPXoiKIsEZKTFgmlnui83qttsFtdLhTXjv1O-FDr3RIzgyg2tpiijgldcdoTYTkrREYcaCCMoZp9no3vza1G-hM_mjQw5Hp8c3oVqr3t4oJjiSV2eB8Ngj-xwQx_aXkmep1rsqN1mczs3HRqAtW1zXDku6KWfyByquDjTN-BOty_kjw5kiQmQQ_U6-nGNXyy81_sJ__nb3-fszSPWuCjzGAPTQPI7Wb_PuGqN3kq3nys-zVw8YfRPejXv8CFJr-Jg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2025699125</pqid></control><display><type>article</type><title>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Public Library of Science (PLoS)</source><creator>Thompson, Ammon ; Infield, Daniel T ; Smith, Adam R ; Smith, G Troy ; Ahern, Christopher A ; Zakon, Harold H</creator><creatorcontrib>Thompson, Ammon ; Infield, Daniel T ; Smith, Adam R ; Smith, G Troy ; Ahern, Christopher A ; Zakon, Harold H</creatorcontrib><description>Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2004892</identifier><identifier>PMID: 29584718</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Adults ; Amino Acid Substitution ; Amino acids ; Animal behavior ; Animal Communication ; Animals ; Axons ; Bioinformatics ; Biology ; Biology and Life Sciences ; Biophysics ; Computer and Information Sciences ; Cytochrome ; Deactivation ; Electric Fish - genetics ; Electric instruments ; Electric Organ - physiology ; Electric organs ; Electric organs in fishes ; Evolution ; Evolution &amp; development ; Evolution, Molecular ; Fish ; Funding ; Gene Duplication ; Gene expression ; Gene Expression Profiling ; Inactivation ; Medicine and Health Sciences ; Models, Molecular ; Muscles ; Musculoskeletal system ; Natural history ; Neurons ; Neurosciences ; Organs ; Phenotypes ; Phylogenetics ; Physical Sciences ; Physiology ; Protein Domains ; Protein Isoforms - genetics ; Protein Isoforms - metabolism ; Reproduction (copying) ; Research and Analysis Methods ; Sequence Analysis, Protein ; Short Reports ; Skeletal muscle ; Sodium ; Sodium channels ; Sodium channels (voltage-gated) ; Spinal cord ; Spinal Cord - metabolism ; Supervision ; Voltage-Gated Sodium Channels - chemistry ; Voltage-Gated Sodium Channels - genetics</subject><ispartof>PLoS biology, 2018-03, Vol.16 (3), p.e2004892</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thompson A, Infield DT, Smith AR, Smith GT, Ahern CA, Zakon HH (2018) Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biol 16(3): e2004892. https://doi.org/10.1371/journal.pbio.2004892</rights><rights>2018 Thompson et al 2018 Thompson et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: Thompson A, Infield DT, Smith AR, Smith GT, Ahern CA, Zakon HH (2018) Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current. PLoS Biol 16(3): e2004892. https://doi.org/10.1371/journal.pbio.2004892</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</citedby><cites>FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</cites><orcidid>0000-0003-1825-4685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870949/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5870949/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29584718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Thompson, Ammon</creatorcontrib><creatorcontrib>Infield, Daniel T</creatorcontrib><creatorcontrib>Smith, Adam R</creatorcontrib><creatorcontrib>Smith, G Troy</creatorcontrib><creatorcontrib>Ahern, Christopher A</creatorcontrib><creatorcontrib>Zakon, Harold H</creatorcontrib><title>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.</description><subject>Adults</subject><subject>Amino Acid Substitution</subject><subject>Amino acids</subject><subject>Animal behavior</subject><subject>Animal Communication</subject><subject>Animals</subject><subject>Axons</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Computer and Information Sciences</subject><subject>Cytochrome</subject><subject>Deactivation</subject><subject>Electric Fish - genetics</subject><subject>Electric instruments</subject><subject>Electric Organ - physiology</subject><subject>Electric organs</subject><subject>Electric organs in fishes</subject><subject>Evolution</subject><subject>Evolution &amp; development</subject><subject>Evolution, Molecular</subject><subject>Fish</subject><subject>Funding</subject><subject>Gene Duplication</subject><subject>Gene expression</subject><subject>Gene Expression Profiling</subject><subject>Inactivation</subject><subject>Medicine and Health Sciences</subject><subject>Models, Molecular</subject><subject>Muscles</subject><subject>Musculoskeletal system</subject><subject>Natural history</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Organs</subject><subject>Phenotypes</subject><subject>Phylogenetics</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Protein Domains</subject><subject>Protein Isoforms - genetics</subject><subject>Protein Isoforms - metabolism</subject><subject>Reproduction (copying)</subject><subject>Research and Analysis Methods</subject><subject>Sequence Analysis, Protein</subject><subject>Short Reports</subject><subject>Skeletal muscle</subject><subject>Sodium</subject><subject>Sodium channels</subject><subject>Sodium channels (voltage-gated)</subject><subject>Spinal cord</subject><subject>Spinal Cord - metabolism</subject><subject>Supervision</subject><subject>Voltage-Gated Sodium Channels - chemistry</subject><subject>Voltage-Gated Sodium Channels - genetics</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVkl1rHCEUhofS0qRp_0FpB3LVi9mqo6PeFELox0JoIP24Fcc5zrrMjlt1QvPv63YnSxZaaPFCz_F5X4-HUxQvMVrgmuO3az-FUQ-Lbev8giBEhSSPilPMKKu4EOzxg_NJ8SzGNUKESCKeFidEMkE5FqfF3Y3euq6EWz9Myfmx9LbUZY6S7qHqdYKujL5z06Y0Kz2OMJQ9jFC6MWODGyFjOw0MYFJwprQursoBdBfL5DOzhRBdTDCmg88UQg6fF0-sHiK8mPez4tuH918vP1VX1x-XlxdXlWkkS5WFjiNsEMu1N9xywC02EhvWcNESihoBbdMZ3TYWY2Qpo20tGbRCGCGssfVZ8Xrvux18VHPXoiKIsEZKTFgmlnui83qttsFtdLhTXjv1O-FDr3RIzgyg2tpiijgldcdoTYTkrREYcaCCMoZp9no3vza1G-hM_mjQw5Hp8c3oVqr3t4oJjiSV2eB8Ngj-xwQx_aXkmep1rsqN1mczs3HRqAtW1zXDku6KWfyByquDjTN-BOty_kjw5kiQmQQ_U6-nGNXyy81_sJ__nb3-fszSPWuCjzGAPTQPI7Wb_PuGqN3kq3nys-zVw8YfRPejXv8CFJr-Jg</recordid><startdate>20180327</startdate><enddate>20180327</enddate><creator>Thompson, Ammon</creator><creator>Infield, Daniel T</creator><creator>Smith, Adam R</creator><creator>Smith, G Troy</creator><creator>Ahern, Christopher A</creator><creator>Zakon, Harold H</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0003-1825-4685</orcidid></search><sort><creationdate>20180327</creationdate><title>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</title><author>Thompson, Ammon ; Infield, Daniel T ; Smith, Adam R ; Smith, G Troy ; Ahern, Christopher A ; Zakon, Harold H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c695t-fed701c0522967f7e1b1c91c5678b24068eb6dcab6f110f454b395eb88c88fcf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Adults</topic><topic>Amino Acid Substitution</topic><topic>Amino acids</topic><topic>Animal behavior</topic><topic>Animal Communication</topic><topic>Animals</topic><topic>Axons</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Computer and Information Sciences</topic><topic>Cytochrome</topic><topic>Deactivation</topic><topic>Electric Fish - genetics</topic><topic>Electric instruments</topic><topic>Electric Organ - physiology</topic><topic>Electric organs</topic><topic>Electric organs in fishes</topic><topic>Evolution</topic><topic>Evolution &amp; development</topic><topic>Evolution, Molecular</topic><topic>Fish</topic><topic>Funding</topic><topic>Gene Duplication</topic><topic>Gene expression</topic><topic>Gene Expression Profiling</topic><topic>Inactivation</topic><topic>Medicine and Health Sciences</topic><topic>Models, Molecular</topic><topic>Muscles</topic><topic>Musculoskeletal system</topic><topic>Natural history</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Organs</topic><topic>Phenotypes</topic><topic>Phylogenetics</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Protein Domains</topic><topic>Protein Isoforms - genetics</topic><topic>Protein Isoforms - metabolism</topic><topic>Reproduction (copying)</topic><topic>Research and Analysis Methods</topic><topic>Sequence Analysis, Protein</topic><topic>Short Reports</topic><topic>Skeletal muscle</topic><topic>Sodium</topic><topic>Sodium channels</topic><topic>Sodium channels (voltage-gated)</topic><topic>Spinal cord</topic><topic>Spinal Cord - metabolism</topic><topic>Supervision</topic><topic>Voltage-Gated Sodium Channels - chemistry</topic><topic>Voltage-Gated Sodium Channels - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Thompson, Ammon</creatorcontrib><creatorcontrib>Infield, Daniel T</creatorcontrib><creatorcontrib>Smith, Adam R</creatorcontrib><creatorcontrib>Smith, G Troy</creatorcontrib><creatorcontrib>Ahern, Christopher A</creatorcontrib><creatorcontrib>Zakon, Harold H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Thompson, Ammon</au><au>Infield, Daniel T</au><au>Smith, Adam R</au><au>Smith, G Troy</au><au>Ahern, Christopher A</au><au>Zakon, Harold H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-03-27</date><risdate>2018</risdate><volume>16</volume><issue>3</issue><spage>e2004892</spage><pages>e2004892-</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Most weakly electric fish navigate and communicate by sensing electric signals generated by their muscle-derived electric organs. Adults of one lineage (Apteronotidae), which discharge their electric organs in excess of 1 kHz, instead have an electric organ derived from the axons of specialized spinal neurons (electromotorneurons [EMNs]). EMNs fire spontaneously and are the fastest-firing neurons known. This biophysically extreme phenotype depends upon a persistent sodium current, the molecular underpinnings of which remain unknown. We show that a skeletal muscle-specific sodium channel gene duplicated in this lineage and, within approximately 2 million years, began expressing in the spinal cord, a novel site of expression for this isoform. Concurrently, amino acid replacements that cause a persistent sodium current accumulated in the regions of the channel underlying inactivation. Therefore, a novel adaptation allowing extreme neuronal firing arose from the duplication, change in expression, and rapid sequence evolution of a muscle-expressing sodium channel gene.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29584718</pmid><doi>10.1371/journal.pbio.2004892</doi><orcidid>https://orcid.org/0000-0003-1825-4685</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2018-03, Vol.16 (3), p.e2004892
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2025699125
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Public Library of Science (PLoS)
subjects Adults
Amino Acid Substitution
Amino acids
Animal behavior
Animal Communication
Animals
Axons
Bioinformatics
Biology
Biology and Life Sciences
Biophysics
Computer and Information Sciences
Cytochrome
Deactivation
Electric Fish - genetics
Electric instruments
Electric Organ - physiology
Electric organs
Electric organs in fishes
Evolution
Evolution & development
Evolution, Molecular
Fish
Funding
Gene Duplication
Gene expression
Gene Expression Profiling
Inactivation
Medicine and Health Sciences
Models, Molecular
Muscles
Musculoskeletal system
Natural history
Neurons
Neurosciences
Organs
Phenotypes
Phylogenetics
Physical Sciences
Physiology
Protein Domains
Protein Isoforms - genetics
Protein Isoforms - metabolism
Reproduction (copying)
Research and Analysis Methods
Sequence Analysis, Protein
Short Reports
Skeletal muscle
Sodium
Sodium channels
Sodium channels (voltage-gated)
Spinal cord
Spinal Cord - metabolism
Supervision
Voltage-Gated Sodium Channels - chemistry
Voltage-Gated Sodium Channels - genetics
title Rapid evolution of a voltage-gated sodium channel gene in a lineage of electric fish leads to a persistent sodium current
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T01%3A01%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20evolution%20of%20a%20voltage-gated%20sodium%20channel%20gene%20in%20a%20lineage%20of%20electric%20fish%20leads%20to%20a%20persistent%20sodium%20current&rft.jtitle=PLoS%20biology&rft.au=Thompson,%20Ammon&rft.date=2018-03-27&rft.volume=16&rft.issue=3&rft.spage=e2004892&rft.pages=e2004892-&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2004892&rft_dat=%3Cgale_plos_%3EA533351944%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2025699125&rft_id=info:pmid/29584718&rft_galeid=A533351944&rft_doaj_id=oai_doaj_org_article_b3f1407423d5432897bc8107e4845514&rfr_iscdi=true