The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101

Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-04, Vol.13 (4), p.e0195638-e0195638
Hauptverfasser: Boatman, Tobias G, Davey, Phillip A, Lawson, Tracy, Geider, Richard J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0195638
container_issue 4
container_start_page e0195638
container_title PloS one
container_volume 13
creator Boatman, Tobias G
Davey, Phillip A
Lawson, Tracy
Geider, Richard J
description Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.
doi_str_mv 10.1371/journal.pone.0195638
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2024149382</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534255265</galeid><doaj_id>oai_doaj_org_article_340fffaaa0b349d58eeb730a049503e9</doaj_id><sourcerecordid>A534255265</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-22a8699ab5dbc9c04e22d6e073aabcc5863f3e8f35f79f32941d0088e1b40cc43</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xvciOU4sdCpWBXb8OZTLKTMjNZkxlx_fVm3W3ZkV5ILhLOec6bnJO3KJ5jNMd0gd_dhDH20M43obdzhBUXVD4oTrGiZCYIog-PzifFk5RuEOJUCvG4OCFKMMyFPC2Wq8aWm2abfGjD2htoSxPSUAZX1h5-hyGGnC1diOUqetOE2qbOj11p43ZoIth8XH65xgg_LR45aJN9dtjPim8fP6wuPs8urz4tL84vZ0YoMswIASmUgorXlVEGMUtILSxaUIDKGC4FddRKR7lbKEeJYrhGSEqLK4aMYfSseLnX3bQh6cMUkiaIMMwUlSQTyz1RB7jRm-g7iFsdwOu_gRDXGuLgTWs1Zcg5BwCookzVXFpbLSgCxBRH1Kqs9f5w21h1tja2HyK0E9FppveNXoefmsusQHYCbw4CMfwYbRp055OxbQu9DeP-3UxwiXFGX_2D3t_dgVpDbsD3Lv8RmJ2oPueUEc6J4Jma30PlVdvOm2wZ53N8UvB2UpCZwf4a1jCmpJfXX_-fvfo-ZV8fsY2FdmhSaMfBhz5NQbYHTQwpRevuhoyR3jn-dhp653h9cHwue3H8QXdFtxanfwDykfqL</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024149382</pqid></control><display><type>article</type><title>The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Boatman, Tobias G ; Davey, Phillip A ; Lawson, Tracy ; Geider, Richard J</creator><contributor>Campbell, Douglas A.</contributor><creatorcontrib>Boatman, Tobias G ; Davey, Phillip A ; Lawson, Tracy ; Geider, Richard J ; Campbell, Douglas A.</creatorcontrib><description>Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0195638</identifier><identifier>PMID: 29641568</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Absorption coefficient ; Absorption, Physicochemical ; Absorptivity ; Acclimation ; Acclimatization ; Amino acids ; ATP ; Biology and Life Sciences ; Biosynthesis ; Carbon ; Carbon dioxide ; Carbon dioxide fixation ; Carbon sequestration ; Chemical composition ; Cyanobacteria ; Darkness ; Earth Sciences ; Earth surface ; Ecology and Environmental Sciences ; Electromagnetic absorption ; Electron Transport ; Energy conservation ; Evolution ; Filamentous bacteria ; Fluorescence ; Light ; Light absorption ; Light intensity ; Limnology ; Luminous intensity ; Marine ecology ; Mass spectrometry ; Mass spectroscopy ; Methods ; NADP ; Nitrates ; Nitrogen ; Nitrogen Fixation ; Nitrogen-fixing microorganisms ; Nitrogenase ; Nitrogenation ; Oceanography ; Oceans ; Oxygen ; Oxygen - metabolism ; Oxygen uptake ; Photons ; Photosynthesis ; Photosystem II ; Photosystem II Protein Complex - metabolism ; Physical Sciences ; Physiological aspects ; Physiology ; Plankton ; Slopes ; Trichodesmium - cytology ; Trichodesmium - metabolism ; Trichodesmium - physiology ; Trichodesmium - radiation effects</subject><ispartof>PloS one, 2018-04, Vol.13 (4), p.e0195638-e0195638</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Boatman et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Boatman et al 2018 Boatman et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-22a8699ab5dbc9c04e22d6e073aabcc5863f3e8f35f79f32941d0088e1b40cc43</citedby><cites>FETCH-LOGICAL-c692t-22a8699ab5dbc9c04e22d6e073aabcc5863f3e8f35f79f32941d0088e1b40cc43</cites><orcidid>0000-0001-7541-3844</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895029/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895029/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29641568$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Campbell, Douglas A.</contributor><creatorcontrib>Boatman, Tobias G</creatorcontrib><creatorcontrib>Davey, Phillip A</creatorcontrib><creatorcontrib>Lawson, Tracy</creatorcontrib><creatorcontrib>Geider, Richard J</creatorcontrib><title>The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.</description><subject>Absorption coefficient</subject><subject>Absorption, Physicochemical</subject><subject>Absorptivity</subject><subject>Acclimation</subject><subject>Acclimatization</subject><subject>Amino acids</subject><subject>ATP</subject><subject>Biology and Life Sciences</subject><subject>Biosynthesis</subject><subject>Carbon</subject><subject>Carbon dioxide</subject><subject>Carbon dioxide fixation</subject><subject>Carbon sequestration</subject><subject>Chemical composition</subject><subject>Cyanobacteria</subject><subject>Darkness</subject><subject>Earth Sciences</subject><subject>Earth surface</subject><subject>Ecology and Environmental Sciences</subject><subject>Electromagnetic absorption</subject><subject>Electron Transport</subject><subject>Energy conservation</subject><subject>Evolution</subject><subject>Filamentous bacteria</subject><subject>Fluorescence</subject><subject>Light</subject><subject>Light absorption</subject><subject>Light intensity</subject><subject>Limnology</subject><subject>Luminous intensity</subject><subject>Marine ecology</subject><subject>Mass spectrometry</subject><subject>Mass spectroscopy</subject><subject>Methods</subject><subject>NADP</subject><subject>Nitrates</subject><subject>Nitrogen</subject><subject>Nitrogen Fixation</subject><subject>Nitrogen-fixing microorganisms</subject><subject>Nitrogenase</subject><subject>Nitrogenation</subject><subject>Oceanography</subject><subject>Oceans</subject><subject>Oxygen</subject><subject>Oxygen - metabolism</subject><subject>Oxygen uptake</subject><subject>Photons</subject><subject>Photosynthesis</subject><subject>Photosystem II</subject><subject>Photosystem II Protein Complex - metabolism</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Plankton</subject><subject>Slopes</subject><subject>Trichodesmium - cytology</subject><subject>Trichodesmium - metabolism</subject><subject>Trichodesmium - physiology</subject><subject>Trichodesmium - radiation effects</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1rFDEUhgdRbK3-A9EBQfRi13xvciOU4sdCpWBXb8OZTLKTMjNZkxlx_fVm3W3ZkV5ILhLOec6bnJO3KJ5jNMd0gd_dhDH20M43obdzhBUXVD4oTrGiZCYIog-PzifFk5RuEOJUCvG4OCFKMMyFPC2Wq8aWm2abfGjD2htoSxPSUAZX1h5-hyGGnC1diOUqetOE2qbOj11p43ZoIth8XH65xgg_LR45aJN9dtjPim8fP6wuPs8urz4tL84vZ0YoMswIASmUgorXlVEGMUtILSxaUIDKGC4FddRKR7lbKEeJYrhGSEqLK4aMYfSseLnX3bQh6cMUkiaIMMwUlSQTyz1RB7jRm-g7iFsdwOu_gRDXGuLgTWs1Zcg5BwCookzVXFpbLSgCxBRH1Kqs9f5w21h1tja2HyK0E9FppveNXoefmsusQHYCbw4CMfwYbRp055OxbQu9DeP-3UxwiXFGX_2D3t_dgVpDbsD3Lv8RmJ2oPueUEc6J4Jma30PlVdvOm2wZ53N8UvB2UpCZwf4a1jCmpJfXX_-fvfo-ZV8fsY2FdmhSaMfBhz5NQbYHTQwpRevuhoyR3jn-dhp653h9cHwue3H8QXdFtxanfwDykfqL</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Boatman, Tobias G</creator><creator>Davey, Phillip A</creator><creator>Lawson, Tracy</creator><creator>Geider, Richard J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7541-3844</orcidid></search><sort><creationdate>20180411</creationdate><title>The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101</title><author>Boatman, Tobias G ; Davey, Phillip A ; Lawson, Tracy ; Geider, Richard J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-22a8699ab5dbc9c04e22d6e073aabcc5863f3e8f35f79f32941d0088e1b40cc43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Absorption coefficient</topic><topic>Absorption, Physicochemical</topic><topic>Absorptivity</topic><topic>Acclimation</topic><topic>Acclimatization</topic><topic>Amino acids</topic><topic>ATP</topic><topic>Biology and Life Sciences</topic><topic>Biosynthesis</topic><topic>Carbon</topic><topic>Carbon dioxide</topic><topic>Carbon dioxide fixation</topic><topic>Carbon sequestration</topic><topic>Chemical composition</topic><topic>Cyanobacteria</topic><topic>Darkness</topic><topic>Earth Sciences</topic><topic>Earth surface</topic><topic>Ecology and Environmental Sciences</topic><topic>Electromagnetic absorption</topic><topic>Electron Transport</topic><topic>Energy conservation</topic><topic>Evolution</topic><topic>Filamentous bacteria</topic><topic>Fluorescence</topic><topic>Light</topic><topic>Light absorption</topic><topic>Light intensity</topic><topic>Limnology</topic><topic>Luminous intensity</topic><topic>Marine ecology</topic><topic>Mass spectrometry</topic><topic>Mass spectroscopy</topic><topic>Methods</topic><topic>NADP</topic><topic>Nitrates</topic><topic>Nitrogen</topic><topic>Nitrogen Fixation</topic><topic>Nitrogen-fixing microorganisms</topic><topic>Nitrogenase</topic><topic>Nitrogenation</topic><topic>Oceanography</topic><topic>Oceans</topic><topic>Oxygen</topic><topic>Oxygen - metabolism</topic><topic>Oxygen uptake</topic><topic>Photons</topic><topic>Photosynthesis</topic><topic>Photosystem II</topic><topic>Photosystem II Protein Complex - metabolism</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Plankton</topic><topic>Slopes</topic><topic>Trichodesmium - cytology</topic><topic>Trichodesmium - metabolism</topic><topic>Trichodesmium - physiology</topic><topic>Trichodesmium - radiation effects</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Boatman, Tobias G</creatorcontrib><creatorcontrib>Davey, Phillip A</creatorcontrib><creatorcontrib>Lawson, Tracy</creatorcontrib><creatorcontrib>Geider, Richard J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Boatman, Tobias G</au><au>Davey, Phillip A</au><au>Lawson, Tracy</au><au>Geider, Richard J</au><au>Campbell, Douglas A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>e0195638</spage><epage>e0195638</epage><pages>e0195638-e0195638</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Trichodesmium plays a significant role in the oligotrophic oceans, fixing nitrogen in an area corresponding to half of the Earth's surface, representing up to 50% of new production in some oligotrophic tropical and subtropical oceans. Whilst Trichodesmium blooms at the surface exhibit a strong dependence on diazotrophy, colonies at depth or at the surface after a mixing event could be utilising additional N-sources. We conducted experiments to establish how acclimation to varying N-sources affects the growth, elemental composition, light absorption coefficient, N2 fixation, PSII electron transport rate and the relationship between net and gross photosynthetic O2 exchange in T. erythraeum IMS101. To do this, cultures were acclimated to growth medium containing NH4+ and NO3- (replete concentrations) or N2 only (diazotrophic control). The light dependencies of O2 evolution and O2 uptake were measured using membrane inlet mass spectrometry (MIMS), while PSII electron transport rates were measured from fluorescence light curves (FLCs). We found that at a saturating light intensity, Trichodesmium growth was ~ 10% and 13% lower when grown on N2 than with NH4+ and NO3-, respectively. Oxygen uptake increased linearly with net photosynthesis across all light intensities ranging from darkness to 1100 μmol photons m-2 s-1. The maximum rates and initial slopes of light response curves for C-specific gross and net photosynthesis and the slope of the relationship between gross and net photosynthesis increased significantly under non-diazotrophic conditions. We attribute these observations to a reduced expenditure of reductant and ATP for nitrogenase activity under non-diazotrophic conditions which allows NADPH and ATP to be re-directed to CO2 fixation and/or biosynthesis. The energy and reductant conserved through utilising additional N-sources could enhance Trichodesmium's productivity and growth and have major implications for its role in ocean C and N cycles.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29641568</pmid><doi>10.1371/journal.pone.0195638</doi><tpages>e0195638</tpages><orcidid>https://orcid.org/0000-0001-7541-3844</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-04, Vol.13 (4), p.e0195638-e0195638
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2024149382
source MEDLINE; DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Absorption coefficient
Absorption, Physicochemical
Absorptivity
Acclimation
Acclimatization
Amino acids
ATP
Biology and Life Sciences
Biosynthesis
Carbon
Carbon dioxide
Carbon dioxide fixation
Carbon sequestration
Chemical composition
Cyanobacteria
Darkness
Earth Sciences
Earth surface
Ecology and Environmental Sciences
Electromagnetic absorption
Electron Transport
Energy conservation
Evolution
Filamentous bacteria
Fluorescence
Light
Light absorption
Light intensity
Limnology
Luminous intensity
Marine ecology
Mass spectrometry
Mass spectroscopy
Methods
NADP
Nitrates
Nitrogen
Nitrogen Fixation
Nitrogen-fixing microorganisms
Nitrogenase
Nitrogenation
Oceanography
Oceans
Oxygen
Oxygen - metabolism
Oxygen uptake
Photons
Photosynthesis
Photosystem II
Photosystem II Protein Complex - metabolism
Physical Sciences
Physiological aspects
Physiology
Plankton
Slopes
Trichodesmium - cytology
Trichodesmium - metabolism
Trichodesmium - physiology
Trichodesmium - radiation effects
title The physiological cost of diazotrophy for Trichodesmium erythraeum IMS101
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T19%3A15%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20physiological%20cost%20of%20diazotrophy%20for%20Trichodesmium%20erythraeum%20IMS101&rft.jtitle=PloS%20one&rft.au=Boatman,%20Tobias%20G&rft.date=2018-04-11&rft.volume=13&rft.issue=4&rft.spage=e0195638&rft.epage=e0195638&rft.pages=e0195638-e0195638&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0195638&rft_dat=%3Cgale_plos_%3EA534255265%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024149382&rft_id=info:pmid/29641568&rft_galeid=A534255265&rft_doaj_id=oai_doaj_org_article_340fffaaa0b349d58eeb730a049503e9&rfr_iscdi=true