Efficient minimization of multipole electrostatic potentials in torsion space

The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-04, Vol.13 (4), p.e0195578-e0195578
Hauptverfasser: Bodmer, Nicholas K, Havranek, James J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0195578
container_issue 4
container_start_page e0195578
container_title PloS one
container_volume 13
creator Bodmer, Nicholas K
Havranek, James J
description The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom.
doi_str_mv 10.1371/journal.pone.0195578
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2024147679</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A534255262</galeid><doaj_id>oai_doaj_org_article_ae4a4df5c86e48089f281d00aace4df7</doaj_id><sourcerecordid>A534255262</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-d8f9ced4e28bb7bddeba0941449b743a8fc3e5802f12ed4eb6bc7aef10dca5e3</originalsourceid><addsrcrecordid>eNqNkl-L1DAUxYso7rr6DUQLgujDjEma9M-LsCyrDqws6OJrSNObmQxpU5tU1E_vrdNdprIP0oeWm989N-f2JMlzStY0K-i7vR-HTrl17ztYE1oJUZQPklNaZWyVM5I9PPo-SZ6EsCdEZGWeP05OWJVzig2nyedLY6y20MW0tZ1t7W8Vre9Sb9J2dNH23kEKDnQcfIh4ptPeR8StciG1XRr9EKaG0CsNT5NHBuvwbH6fJTcfLm8uPq2urj9uLs6vVhrnxlVTmkpDw4GVdV3UTQO1IhWnnFd1wTNVGp2BKAkzlE1Ynde6UGAoabQSkJ0lLw-yvfNBzosIkhGGGkVeVEhsDkTj1V72g23V8Et6ZeXfgh-2Ug1oxoFUwBVvjNBlDrwkZWVYSRtCFPrBeoFa7-dpY91Co9H8oNxCdHnS2Z3c-h9SlJUggqDAm1lg8N9HCFG2NmhwTnXgx8O9eY5-BaKv_kHvdzdTW4UGbGc8ztWTqDwXGWdCsJwhtb6HwqeB1mpMjbFYXzS8XTQgE-Fn3KoxBLn5-uX_2etvS_b1EbsD5eIueDdOQQtLkB9AjWELA5i7JVMip9DfbkNOoZdz6LHtxfEPumu6TXn2Bzt4_vE</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2024147679</pqid></control><display><type>article</type><title>Efficient minimization of multipole electrostatic potentials in torsion space</title><source>MEDLINE</source><source>Public Library of Science</source><source>PubMed</source><source>Directory of Open Access Journals</source><source>Free Full-Text Journals in Chemistry</source><source>EZB Electronic Journals Library</source><creator>Bodmer, Nicholas K ; Havranek, James J</creator><contributor>Salsbury, Freddie</contributor><creatorcontrib>Bodmer, Nicholas K ; Havranek, James J ; Salsbury, Freddie</creatorcontrib><description>The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0195578</identifier><identifier>PMID: 29641557</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Amoeba ; Analysis ; Anisotropy ; Biochemistry ; Biology and Life Sciences ; Biophysics ; Chemical bonds ; Computational chemistry ; Computer applications ; Degrees of freedom ; Electric potential ; Electrostatic properties ; Electrostatics ; Macromolecules ; Models, Molecular ; Molecular Conformation ; Molecular modelling ; Optimization ; Physical Sciences ; Proteins ; Quantum mechanics ; Quantum Theory ; Rotation ; Solvents ; Solvents - chemistry ; Static Electricity ; Surface area ; Surface Properties ; Tensors ; Thermodynamics ; Torsion</subject><ispartof>PloS one, 2018-04, Vol.13 (4), p.e0195578-e0195578</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Bodmer, Havranek. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Bodmer, Havranek 2018 Bodmer, Havranek</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c641t-d8f9ced4e28bb7bddeba0941449b743a8fc3e5802f12ed4eb6bc7aef10dca5e3</cites><orcidid>0000-0001-8241-5928</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895050/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5895050/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2919,23857,27915,27916,53782,53784,79361,79362</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29641557$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Salsbury, Freddie</contributor><creatorcontrib>Bodmer, Nicholas K</creatorcontrib><creatorcontrib>Havranek, James J</creatorcontrib><title>Efficient minimization of multipole electrostatic potentials in torsion space</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom.</description><subject>Algorithms</subject><subject>Amoeba</subject><subject>Analysis</subject><subject>Anisotropy</subject><subject>Biochemistry</subject><subject>Biology and Life Sciences</subject><subject>Biophysics</subject><subject>Chemical bonds</subject><subject>Computational chemistry</subject><subject>Computer applications</subject><subject>Degrees of freedom</subject><subject>Electric potential</subject><subject>Electrostatic properties</subject><subject>Electrostatics</subject><subject>Macromolecules</subject><subject>Models, Molecular</subject><subject>Molecular Conformation</subject><subject>Molecular modelling</subject><subject>Optimization</subject><subject>Physical Sciences</subject><subject>Proteins</subject><subject>Quantum mechanics</subject><subject>Quantum Theory</subject><subject>Rotation</subject><subject>Solvents</subject><subject>Solvents - chemistry</subject><subject>Static Electricity</subject><subject>Surface area</subject><subject>Surface Properties</subject><subject>Tensors</subject><subject>Thermodynamics</subject><subject>Torsion</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl-L1DAUxYso7rr6DUQLgujDjEma9M-LsCyrDqws6OJrSNObmQxpU5tU1E_vrdNdprIP0oeWm989N-f2JMlzStY0K-i7vR-HTrl17ztYE1oJUZQPklNaZWyVM5I9PPo-SZ6EsCdEZGWeP05OWJVzig2nyedLY6y20MW0tZ1t7W8Vre9Sb9J2dNH23kEKDnQcfIh4ptPeR8StciG1XRr9EKaG0CsNT5NHBuvwbH6fJTcfLm8uPq2urj9uLs6vVhrnxlVTmkpDw4GVdV3UTQO1IhWnnFd1wTNVGp2BKAkzlE1Ynde6UGAoabQSkJ0lLw-yvfNBzosIkhGGGkVeVEhsDkTj1V72g23V8Et6ZeXfgh-2Ug1oxoFUwBVvjNBlDrwkZWVYSRtCFPrBeoFa7-dpY91Co9H8oNxCdHnS2Z3c-h9SlJUggqDAm1lg8N9HCFG2NmhwTnXgx8O9eY5-BaKv_kHvdzdTW4UGbGc8ztWTqDwXGWdCsJwhtb6HwqeB1mpMjbFYXzS8XTQgE-Fn3KoxBLn5-uX_2etvS_b1EbsD5eIueDdOQQtLkB9AjWELA5i7JVMip9DfbkNOoZdz6LHtxfEPumu6TXn2Bzt4_vE</recordid><startdate>20180411</startdate><enddate>20180411</enddate><creator>Bodmer, Nicholas K</creator><creator>Havranek, James J</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-8241-5928</orcidid></search><sort><creationdate>20180411</creationdate><title>Efficient minimization of multipole electrostatic potentials in torsion space</title><author>Bodmer, Nicholas K ; Havranek, James J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-d8f9ced4e28bb7bddeba0941449b743a8fc3e5802f12ed4eb6bc7aef10dca5e3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Amoeba</topic><topic>Analysis</topic><topic>Anisotropy</topic><topic>Biochemistry</topic><topic>Biology and Life Sciences</topic><topic>Biophysics</topic><topic>Chemical bonds</topic><topic>Computational chemistry</topic><topic>Computer applications</topic><topic>Degrees of freedom</topic><topic>Electric potential</topic><topic>Electrostatic properties</topic><topic>Electrostatics</topic><topic>Macromolecules</topic><topic>Models, Molecular</topic><topic>Molecular Conformation</topic><topic>Molecular modelling</topic><topic>Optimization</topic><topic>Physical Sciences</topic><topic>Proteins</topic><topic>Quantum mechanics</topic><topic>Quantum Theory</topic><topic>Rotation</topic><topic>Solvents</topic><topic>Solvents - chemistry</topic><topic>Static Electricity</topic><topic>Surface area</topic><topic>Surface Properties</topic><topic>Tensors</topic><topic>Thermodynamics</topic><topic>Torsion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bodmer, Nicholas K</creatorcontrib><creatorcontrib>Havranek, James J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>ProQuest Nursing and Allied Health Journals</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Agriculture &amp; Environmental Science Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agriculture Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bodmer, Nicholas K</au><au>Havranek, James J</au><au>Salsbury, Freddie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficient minimization of multipole electrostatic potentials in torsion space</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-04-11</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>e0195578</spage><epage>e0195578</epage><pages>e0195578-e0195578</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The development of models of macromolecular electrostatics capable of delivering improved fidelity to quantum mechanical calculations is an active field of research in computational chemistry. Most molecular force field development takes place in the context of models with full Cartesian coordinate degrees of freedom. Nevertheless, a number of macromolecular modeling programs use a reduced set of conformational variables limited to rotatable bonds. Efficient algorithms for minimizing the energies of macromolecular systems with torsional degrees of freedom have been developed with the assumption that all atom-atom interaction potentials are isotropic. We describe novel modifications to address the anisotropy of higher order multipole terms while retaining the efficiency of these approaches. In addition, we present a treatment for obtaining derivatives of atom-centered tensors with respect to torsional degrees of freedom. We apply these results to enable minimization of the Amoeba multipole electrostatics potential in a system with torsional degrees of freedom, and validate the correctness of the gradients by comparison to finite difference approximations. In the interest of enabling a complete model of electrostatics with implicit treatment of solvent-mediated effects, we also derive expressions for the derivative of solvent accessible surface area with respect to torsional degrees of freedom.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29641557</pmid><doi>10.1371/journal.pone.0195578</doi><tpages>e0195578</tpages><orcidid>https://orcid.org/0000-0001-8241-5928</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-04, Vol.13 (4), p.e0195578-e0195578
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2024147679
source MEDLINE; Public Library of Science; PubMed; Directory of Open Access Journals; Free Full-Text Journals in Chemistry; EZB Electronic Journals Library
subjects Algorithms
Amoeba
Analysis
Anisotropy
Biochemistry
Biology and Life Sciences
Biophysics
Chemical bonds
Computational chemistry
Computer applications
Degrees of freedom
Electric potential
Electrostatic properties
Electrostatics
Macromolecules
Models, Molecular
Molecular Conformation
Molecular modelling
Optimization
Physical Sciences
Proteins
Quantum mechanics
Quantum Theory
Rotation
Solvents
Solvents - chemistry
Static Electricity
Surface area
Surface Properties
Tensors
Thermodynamics
Torsion
title Efficient minimization of multipole electrostatic potentials in torsion space
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T18%3A34%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficient%20minimization%20of%20multipole%20electrostatic%20potentials%20in%20torsion%20space&rft.jtitle=PloS%20one&rft.au=Bodmer,%20Nicholas%20K&rft.date=2018-04-11&rft.volume=13&rft.issue=4&rft.spage=e0195578&rft.epage=e0195578&rft.pages=e0195578-e0195578&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0195578&rft_dat=%3Cgale_plos_%3EA534255262%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2024147679&rft_id=info:pmid/29641557&rft_galeid=A534255262&rft_doaj_id=oai_doaj_org_article_ae4a4df5c86e48089f281d00aace4df7&rfr_iscdi=true