Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices

For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-02, Vol.13 (2), p.e0192473-e0192473
Hauptverfasser: Liang, Zhibing, Liu, Fuxian, Gao, Jiale
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0192473
container_issue 2
container_start_page e0192473
container_title PloS one
container_volume 13
creator Liang, Zhibing
Liu, Fuxian
Gao, Jiale
description For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.
doi_str_mv 10.1371/journal.pone.0192473
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2021371814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A527583587</galeid><doaj_id>oai_doaj_org_article_944965b0bae54ce99553640582ddd4e5</doaj_id><sourcerecordid>A527583587</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-5a1db7f999a62b103703eb7ad208381160eff10e6f51388dbaee9d0fe76452183</originalsourceid><addsrcrecordid>eNqNk0tv1DAUhSMEoqXwDxBEQkKwyOBnHptKVYHpSJWKeC4tJ77JeEjsYCcj2PHTcZh0NIO6QFkkcr5z7HvudRQ9xWiBaYbfbOzojGwXvTWwQLggLKP3olNcUJKkBNH7B98n0SPvNwhxmqfpw-iEFIwxzNhp9HvV9c5uQcXL5epb8uHqbVzrdgAX19bFnTQwbsFp08TGmgTaVvfeaiXbGH4OYFQQDtI1MPg48I2zY79fGJysvk_SUvrAWRP7sUycNMp2wXpwugL_OHpQy9bDk_l9Fn15_-7z5VVyfbNcXV5cJ1VakCHhEqsyq4uikCkpMaIZolBmUhGU0xzjFEFdYwRpzTHNc1VKgEKhGrKUcYJzehY93_n2rfViDs8LgsiUZo5ZIFY7Qlm5Eb3TnXS_hJVa_F2wrhHSDbpqQYT4ipSXKOzCWQVFwTlNGeI5UUox4MHrfN5tLDtQFZgQRntkevzH6LVo7FbwHJM0nQxezQbO_hjBD6LTvgr5h47YcTo3IixnnKKAvvgHvbu6mWpkKECb2k7tmUzFBScZzynPs0At7qDCo6DTVZi0MBxwLHh9JAjMECajkaP3YvXp4_-zN1-P2ZcH7BpkO6y9bcdBW-OPQbYDK2e9d1DvQ8ZITMXfpiGmiyLmixJkzw4btBfd3gz6B-XpDmU</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2021371814</pqid></control><display><type>article</type><title>Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Liang, Zhibing ; Liu, Fuxian ; Gao, Jiale</creator><contributor>Deng, Yong</contributor><creatorcontrib>Liang, Zhibing ; Liu, Fuxian ; Gao, Jiale ; Deng, Yong</creatorcontrib><description>For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0192473</identifier><identifier>PMID: 29444144</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Biology and Life Sciences ; Computer simulation ; Engineering research ; Gaussian distribution ; Hypotheses ; International conferences ; Kinematics ; Missiles ; Physical Sciences ; Probability distributions ; Random variables ; Sensors ; Signal processing ; Tracking</subject><ispartof>PloS one, 2018-02, Vol.13 (2), p.e0192473-e0192473</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Liang et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Liang et al 2018 Liang et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-5a1db7f999a62b103703eb7ad208381160eff10e6f51388dbaee9d0fe76452183</citedby><cites>FETCH-LOGICAL-c692t-5a1db7f999a62b103703eb7ad208381160eff10e6f51388dbaee9d0fe76452183</cites><orcidid>0000-0002-2962-658X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812665/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5812665/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29444144$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Deng, Yong</contributor><creatorcontrib>Liang, Zhibing</creatorcontrib><creatorcontrib>Liu, Fuxian</creatorcontrib><creatorcontrib>Gao, Jiale</creatorcontrib><title>Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.</description><subject>Algorithms</subject><subject>Biology and Life Sciences</subject><subject>Computer simulation</subject><subject>Engineering research</subject><subject>Gaussian distribution</subject><subject>Hypotheses</subject><subject>International conferences</subject><subject>Kinematics</subject><subject>Missiles</subject><subject>Physical Sciences</subject><subject>Probability distributions</subject><subject>Random variables</subject><subject>Sensors</subject><subject>Signal processing</subject><subject>Tracking</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk0tv1DAUhSMEoqXwDxBEQkKwyOBnHptKVYHpSJWKeC4tJ77JeEjsYCcj2PHTcZh0NIO6QFkkcr5z7HvudRQ9xWiBaYbfbOzojGwXvTWwQLggLKP3olNcUJKkBNH7B98n0SPvNwhxmqfpw-iEFIwxzNhp9HvV9c5uQcXL5epb8uHqbVzrdgAX19bFnTQwbsFp08TGmgTaVvfeaiXbGH4OYFQQDtI1MPg48I2zY79fGJysvk_SUvrAWRP7sUycNMp2wXpwugL_OHpQy9bDk_l9Fn15_-7z5VVyfbNcXV5cJ1VakCHhEqsyq4uikCkpMaIZolBmUhGU0xzjFEFdYwRpzTHNc1VKgEKhGrKUcYJzehY93_n2rfViDs8LgsiUZo5ZIFY7Qlm5Eb3TnXS_hJVa_F2wrhHSDbpqQYT4ipSXKOzCWQVFwTlNGeI5UUox4MHrfN5tLDtQFZgQRntkevzH6LVo7FbwHJM0nQxezQbO_hjBD6LTvgr5h47YcTo3IixnnKKAvvgHvbu6mWpkKECb2k7tmUzFBScZzynPs0At7qDCo6DTVZi0MBxwLHh9JAjMECajkaP3YvXp4_-zN1-P2ZcH7BpkO6y9bcdBW-OPQbYDK2e9d1DvQ8ZITMXfpiGmiyLmixJkzw4btBfd3gz6B-XpDmU</recordid><startdate>20180214</startdate><enddate>20180214</enddate><creator>Liang, Zhibing</creator><creator>Liu, Fuxian</creator><creator>Gao, Jiale</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2962-658X</orcidid></search><sort><creationdate>20180214</creationdate><title>Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices</title><author>Liang, Zhibing ; Liu, Fuxian ; Gao, Jiale</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-5a1db7f999a62b103703eb7ad208381160eff10e6f51388dbaee9d0fe76452183</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Biology and Life Sciences</topic><topic>Computer simulation</topic><topic>Engineering research</topic><topic>Gaussian distribution</topic><topic>Hypotheses</topic><topic>International conferences</topic><topic>Kinematics</topic><topic>Missiles</topic><topic>Physical Sciences</topic><topic>Probability distributions</topic><topic>Random variables</topic><topic>Sensors</topic><topic>Signal processing</topic><topic>Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liang, Zhibing</creatorcontrib><creatorcontrib>Liu, Fuxian</creatorcontrib><creatorcontrib>Gao, Jiale</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liang, Zhibing</au><au>Liu, Fuxian</au><au>Gao, Jiale</au><au>Deng, Yong</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-02-14</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>e0192473</spage><epage>e0192473</epage><pages>e0192473-e0192473</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>For non-ellipsoidal extended targets and group targets tracking (NETT and NGTT), using an ellipsoid to approximate the target extension may not be accurate enough because of the lack of shape and orientation information. In consideration of this, we model a non-ellipsoidal extended target or target group as a combination of multiple ellipsoidal sub-objects, each represented by a random matrix. Based on these models, an improved gamma Gaussian inverse Wishart probability hypothesis density (GGIW-PHD) filter is proposed to estimate the measurement rates, kinematic states, and extension states of the sub-objects for each extended target or target group. For maneuvering NETT and NGTT, a multi-model (MM) approach based GGIW-PHD (MM-GGIW-PHD) filter is proposed. The common and the individual dynamics of the sub-objects belonging to the same extended target or target group are described by means of the combination between the overall maneuver model and the sub-object models. For the merging of updating components, an improved merging criterion and a new merging method are derived. A specific implementation of prediction partition with pseudo-likelihood method is presented. Two scenarios for non-maneuvering and maneuvering NETT and NGTT are simulated. The results demonstrate the effectiveness of the proposed algorithms.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29444144</pmid><doi>10.1371/journal.pone.0192473</doi><tpages>e0192473</tpages><orcidid>https://orcid.org/0000-0002-2962-658X</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-02, Vol.13 (2), p.e0192473-e0192473
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2021371814
source DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Biology and Life Sciences
Computer simulation
Engineering research
Gaussian distribution
Hypotheses
International conferences
Kinematics
Missiles
Physical Sciences
Probability distributions
Random variables
Sensors
Signal processing
Tracking
title Improved GGIW-PHD filter for maneuvering non-ellipsoidal extended targets or group targets tracking based on sub-random matrices
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T13%3A54%3A28IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Improved%20GGIW-PHD%20filter%20for%20maneuvering%20non-ellipsoidal%20extended%20targets%20or%20group%20targets%20tracking%20based%20on%20sub-random%20matrices&rft.jtitle=PloS%20one&rft.au=Liang,%20Zhibing&rft.date=2018-02-14&rft.volume=13&rft.issue=2&rft.spage=e0192473&rft.epage=e0192473&rft.pages=e0192473-e0192473&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0192473&rft_dat=%3Cgale_plos_%3EA527583587%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2021371814&rft_id=info:pmid/29444144&rft_galeid=A527583587&rft_doaj_id=oai_doaj_org_article_944965b0bae54ce99553640582ddd4e5&rfr_iscdi=true