Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes
This study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM). Sixty-four people with...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-04, Vol.13 (4), p.e0194750-e0194750 |
---|---|
Hauptverfasser: | , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0194750 |
---|---|
container_issue | 4 |
container_start_page | e0194750 |
container_title | PloS one |
container_volume | 13 |
creator | Moser, Othmar Eckstein, Max L McCarthy, Olivia Deere, Rachel Bain, Stephen C Haahr, Hanne L Zijlstra, Eric Heise, Tim Bracken, Richard M |
description | This study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM).
Sixty-four people with T1DM (13 females; age: 34 ± 8 years; HbA1c: 7.8 ± 1% (62 ± 13 mmol.mol-1) performed a CPX test until maximum exhaustion. kHR was calculated by a second-degree polynomial representation between post-warm up and maximum power output. Adjusted stepwise linear regression analysis was performed to investigate kHR and its associations. Receiver operating characteristic (ROC) curve was performed based on kHR for groups kHR < 0.20 vs. > 0.20 in relation to HbA1c.
We found significant relationships between kHR and HbA1c (β = -0.70, P < 0.0001), age (β = -0.23, P = 0.03) and duration of diabetes (β = 0.20, P = 0.04). Stepwise linear regression resulted in an overall adjusted R2 of 0.57 (R = 0.79, P < 0.0001). Our data revealed also significant associations between kHR and percentage of heart rate at heart rate turn point from maximum heart rate (β = 0.43, P < 0.0001) and maximum power output relativized to bodyweight (β = 0.44, P = 0.001) (overall adjusted R2 of 0.44 (R = 0.53, P < 0.0001)). ROC curve analysis based on kHR resulted in a HbA1c threshold of 7.9% (62 mmol.mol-1).
Our data demonstrate atypical HRPC during CPX testing that were mainly related to glycemic control in people with T1DM. |
doi_str_mv | 10.1371/journal.pone.0194750 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2020851107</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A533041353</galeid><doaj_id>oai_doaj_org_article_46b6808659884410be1b568d589f1976</doaj_id><sourcerecordid>A533041353</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-d0bebe9e3a21fba55dc46e8f0065d84769a0b553ab0dca6df8b061550a3f2a673</originalsourceid><addsrcrecordid>eNqNk9-K1DAUxoso7jr6BqIBQfRixqRpMumNsCzqDiws-O82nCZpJ0OmGZN23XkA39t0p7tMZS-kpS3J73wn5zs9WfaS4AWhS_Jh4_vQglvsfGsWmJTFkuFH2SkpaT7nOaaPj75PsmcxbjBmVHD-NDvJS44FK-lp9ufCQOhQgM4gvW9ha1VEug-2bZCCoK2f73q39S2EPTI3JigbDepM7AYCgkEQo1c2xWv023Zr1Li9MkkGKd92wTtk23Rre211Dy4eoG6_M4ggbaEySex59qROe-bF-J5lPz5_-n5-Mb-8-rI6P7ucK17m3VzjylSmNBRyUlfAmFYFN6LGmDMtiiUvAVeMUaiwVsB1LSrMCWMYaJ0DX9JZ9vqgu3M-ytHBKHOcJzsIwQOxOhDaw0bugt2mwqUHK28XfGhk8ssqZ2TBKy6w4KwUoihIOhupGBeaibIm5ZInrY9jtr7aGq1M8gPcRHS609q1bPy1ZEJgymkSeDcKBP-rT57LrY3KOAet8f3tuQlN7U3PWfbmH_Th6kaqgVSAbWuf8qpBVJ4xSnFBKBvSLh6g0qWHvqbfrbZpfRLwfhIwdN7cdA30McrVt6__z179nLJvj9i1Adeto3d9Z30bp2BxAFXwMQZT35tMsBym5c4NOUyLHKclhb06btB90N140L_w-hDA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2020851107</pqid></control><display><type>article</type><title>Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Moser, Othmar ; Eckstein, Max L ; McCarthy, Olivia ; Deere, Rachel ; Bain, Stephen C ; Haahr, Hanne L ; Zijlstra, Eric ; Heise, Tim ; Bracken, Richard M</creator><contributor>Bjornstad, Petter</contributor><creatorcontrib>Moser, Othmar ; Eckstein, Max L ; McCarthy, Olivia ; Deere, Rachel ; Bain, Stephen C ; Haahr, Hanne L ; Zijlstra, Eric ; Heise, Tim ; Bracken, Richard M ; Bjornstad, Petter</creatorcontrib><description>This study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM).
Sixty-four people with T1DM (13 females; age: 34 ± 8 years; HbA1c: 7.8 ± 1% (62 ± 13 mmol.mol-1) performed a CPX test until maximum exhaustion. kHR was calculated by a second-degree polynomial representation between post-warm up and maximum power output. Adjusted stepwise linear regression analysis was performed to investigate kHR and its associations. Receiver operating characteristic (ROC) curve was performed based on kHR for groups kHR < 0.20 vs. > 0.20 in relation to HbA1c.
We found significant relationships between kHR and HbA1c (β = -0.70, P < 0.0001), age (β = -0.23, P = 0.03) and duration of diabetes (β = 0.20, P = 0.04). Stepwise linear regression resulted in an overall adjusted R2 of 0.57 (R = 0.79, P < 0.0001). Our data revealed also significant associations between kHR and percentage of heart rate at heart rate turn point from maximum heart rate (β = 0.43, P < 0.0001) and maximum power output relativized to bodyweight (β = 0.44, P = 0.001) (overall adjusted R2 of 0.44 (R = 0.53, P < 0.0001)). ROC curve analysis based on kHR resulted in a HbA1c threshold of 7.9% (62 mmol.mol-1).
Our data demonstrate atypical HRPC during CPX testing that were mainly related to glycemic control in people with T1DM.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0194750</identifier><identifier>PMID: 29608593</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerobic exercises ; Anthropometry ; Biology and life sciences ; Body measurements ; Cardiovascular disease ; Clinical medicine ; Diabetes ; Diabetes mellitus ; Diabetes mellitus (insulin dependent) ; Engineering schools ; Exercise ; Exhaustion ; Females ; Glucose ; Heart failure ; Heart rate ; Hemoglobin ; Markers ; Maximum power ; Measurement ; Medical schools ; Medicine ; Medicine and health sciences ; Metabolism ; Mortality ; Physical fitness ; Physical Sciences ; Physical training ; Physiological aspects ; Physiology ; Regression analysis ; Research and Analysis Methods ; Studies ; Type 1 diabetes</subject><ispartof>PloS one, 2018-04, Vol.13 (4), p.e0194750-e0194750</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Moser et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Moser et al 2018 Moser et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-d0bebe9e3a21fba55dc46e8f0065d84769a0b553ab0dca6df8b061550a3f2a673</citedby><cites>FETCH-LOGICAL-c692t-d0bebe9e3a21fba55dc46e8f0065d84769a0b553ab0dca6df8b061550a3f2a673</cites><orcidid>0000-0002-1661-0685</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880363/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5880363/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,2914,23846,27903,27904,53769,53771,79346,79347</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29608593$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bjornstad, Petter</contributor><creatorcontrib>Moser, Othmar</creatorcontrib><creatorcontrib>Eckstein, Max L</creatorcontrib><creatorcontrib>McCarthy, Olivia</creatorcontrib><creatorcontrib>Deere, Rachel</creatorcontrib><creatorcontrib>Bain, Stephen C</creatorcontrib><creatorcontrib>Haahr, Hanne L</creatorcontrib><creatorcontrib>Zijlstra, Eric</creatorcontrib><creatorcontrib>Heise, Tim</creatorcontrib><creatorcontrib>Bracken, Richard M</creatorcontrib><title>Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>This study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM).
Sixty-four people with T1DM (13 females; age: 34 ± 8 years; HbA1c: 7.8 ± 1% (62 ± 13 mmol.mol-1) performed a CPX test until maximum exhaustion. kHR was calculated by a second-degree polynomial representation between post-warm up and maximum power output. Adjusted stepwise linear regression analysis was performed to investigate kHR and its associations. Receiver operating characteristic (ROC) curve was performed based on kHR for groups kHR < 0.20 vs. > 0.20 in relation to HbA1c.
We found significant relationships between kHR and HbA1c (β = -0.70, P < 0.0001), age (β = -0.23, P = 0.03) and duration of diabetes (β = 0.20, P = 0.04). Stepwise linear regression resulted in an overall adjusted R2 of 0.57 (R = 0.79, P < 0.0001). Our data revealed also significant associations between kHR and percentage of heart rate at heart rate turn point from maximum heart rate (β = 0.43, P < 0.0001) and maximum power output relativized to bodyweight (β = 0.44, P = 0.001) (overall adjusted R2 of 0.44 (R = 0.53, P < 0.0001)). ROC curve analysis based on kHR resulted in a HbA1c threshold of 7.9% (62 mmol.mol-1).
Our data demonstrate atypical HRPC during CPX testing that were mainly related to glycemic control in people with T1DM.</description><subject>Aerobic exercises</subject><subject>Anthropometry</subject><subject>Biology and life sciences</subject><subject>Body measurements</subject><subject>Cardiovascular disease</subject><subject>Clinical medicine</subject><subject>Diabetes</subject><subject>Diabetes mellitus</subject><subject>Diabetes mellitus (insulin dependent)</subject><subject>Engineering schools</subject><subject>Exercise</subject><subject>Exhaustion</subject><subject>Females</subject><subject>Glucose</subject><subject>Heart failure</subject><subject>Heart rate</subject><subject>Hemoglobin</subject><subject>Markers</subject><subject>Maximum power</subject><subject>Measurement</subject><subject>Medical schools</subject><subject>Medicine</subject><subject>Medicine and health sciences</subject><subject>Metabolism</subject><subject>Mortality</subject><subject>Physical fitness</subject><subject>Physical Sciences</subject><subject>Physical training</subject><subject>Physiological aspects</subject><subject>Physiology</subject><subject>Regression analysis</subject><subject>Research and Analysis Methods</subject><subject>Studies</subject><subject>Type 1 diabetes</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNk9-K1DAUxoso7jr6BqIBQfRixqRpMumNsCzqDiws-O82nCZpJ0OmGZN23XkA39t0p7tMZS-kpS3J73wn5zs9WfaS4AWhS_Jh4_vQglvsfGsWmJTFkuFH2SkpaT7nOaaPj75PsmcxbjBmVHD-NDvJS44FK-lp9ufCQOhQgM4gvW9ha1VEug-2bZCCoK2f73q39S2EPTI3JigbDepM7AYCgkEQo1c2xWv023Zr1Li9MkkGKd92wTtk23Rre211Dy4eoG6_M4ggbaEySex59qROe-bF-J5lPz5_-n5-Mb-8-rI6P7ucK17m3VzjylSmNBRyUlfAmFYFN6LGmDMtiiUvAVeMUaiwVsB1LSrMCWMYaJ0DX9JZ9vqgu3M-ytHBKHOcJzsIwQOxOhDaw0bugt2mwqUHK28XfGhk8ssqZ2TBKy6w4KwUoihIOhupGBeaibIm5ZInrY9jtr7aGq1M8gPcRHS609q1bPy1ZEJgymkSeDcKBP-rT57LrY3KOAet8f3tuQlN7U3PWfbmH_Th6kaqgVSAbWuf8qpBVJ4xSnFBKBvSLh6g0qWHvqbfrbZpfRLwfhIwdN7cdA30McrVt6__z179nLJvj9i1Adeto3d9Z30bp2BxAFXwMQZT35tMsBym5c4NOUyLHKclhb06btB90N140L_w-hDA</recordid><startdate>20180402</startdate><enddate>20180402</enddate><creator>Moser, Othmar</creator><creator>Eckstein, Max L</creator><creator>McCarthy, Olivia</creator><creator>Deere, Rachel</creator><creator>Bain, Stephen C</creator><creator>Haahr, Hanne L</creator><creator>Zijlstra, Eric</creator><creator>Heise, Tim</creator><creator>Bracken, Richard M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-1661-0685</orcidid></search><sort><creationdate>20180402</creationdate><title>Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes</title><author>Moser, Othmar ; Eckstein, Max L ; McCarthy, Olivia ; Deere, Rachel ; Bain, Stephen C ; Haahr, Hanne L ; Zijlstra, Eric ; Heise, Tim ; Bracken, Richard M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-d0bebe9e3a21fba55dc46e8f0065d84769a0b553ab0dca6df8b061550a3f2a673</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerobic exercises</topic><topic>Anthropometry</topic><topic>Biology and life sciences</topic><topic>Body measurements</topic><topic>Cardiovascular disease</topic><topic>Clinical medicine</topic><topic>Diabetes</topic><topic>Diabetes mellitus</topic><topic>Diabetes mellitus (insulin dependent)</topic><topic>Engineering schools</topic><topic>Exercise</topic><topic>Exhaustion</topic><topic>Females</topic><topic>Glucose</topic><topic>Heart failure</topic><topic>Heart rate</topic><topic>Hemoglobin</topic><topic>Markers</topic><topic>Maximum power</topic><topic>Measurement</topic><topic>Medical schools</topic><topic>Medicine</topic><topic>Medicine and health sciences</topic><topic>Metabolism</topic><topic>Mortality</topic><topic>Physical fitness</topic><topic>Physical Sciences</topic><topic>Physical training</topic><topic>Physiological aspects</topic><topic>Physiology</topic><topic>Regression analysis</topic><topic>Research and Analysis Methods</topic><topic>Studies</topic><topic>Type 1 diabetes</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Moser, Othmar</creatorcontrib><creatorcontrib>Eckstein, Max L</creatorcontrib><creatorcontrib>McCarthy, Olivia</creatorcontrib><creatorcontrib>Deere, Rachel</creatorcontrib><creatorcontrib>Bain, Stephen C</creatorcontrib><creatorcontrib>Haahr, Hanne L</creatorcontrib><creatorcontrib>Zijlstra, Eric</creatorcontrib><creatorcontrib>Heise, Tim</creatorcontrib><creatorcontrib>Bracken, Richard M</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Moser, Othmar</au><au>Eckstein, Max L</au><au>McCarthy, Olivia</au><au>Deere, Rachel</au><au>Bain, Stephen C</au><au>Haahr, Hanne L</au><au>Zijlstra, Eric</au><au>Heise, Tim</au><au>Bracken, Richard M</au><au>Bjornstad, Petter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-04-02</date><risdate>2018</risdate><volume>13</volume><issue>4</issue><spage>e0194750</spage><epage>e0194750</epage><pages>e0194750-e0194750</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>This study investigated the degree and direction (kHR) of the heart rate to performance curve (HRPC) during cardio-pulmonary exercise (CPX) testing and explored the relationship with diabetes markers, anthropometry and exercise physiological markers in type 1 diabetes (T1DM).
Sixty-four people with T1DM (13 females; age: 34 ± 8 years; HbA1c: 7.8 ± 1% (62 ± 13 mmol.mol-1) performed a CPX test until maximum exhaustion. kHR was calculated by a second-degree polynomial representation between post-warm up and maximum power output. Adjusted stepwise linear regression analysis was performed to investigate kHR and its associations. Receiver operating characteristic (ROC) curve was performed based on kHR for groups kHR < 0.20 vs. > 0.20 in relation to HbA1c.
We found significant relationships between kHR and HbA1c (β = -0.70, P < 0.0001), age (β = -0.23, P = 0.03) and duration of diabetes (β = 0.20, P = 0.04). Stepwise linear regression resulted in an overall adjusted R2 of 0.57 (R = 0.79, P < 0.0001). Our data revealed also significant associations between kHR and percentage of heart rate at heart rate turn point from maximum heart rate (β = 0.43, P < 0.0001) and maximum power output relativized to bodyweight (β = 0.44, P = 0.001) (overall adjusted R2 of 0.44 (R = 0.53, P < 0.0001)). ROC curve analysis based on kHR resulted in a HbA1c threshold of 7.9% (62 mmol.mol-1).
Our data demonstrate atypical HRPC during CPX testing that were mainly related to glycemic control in people with T1DM.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29608593</pmid><doi>10.1371/journal.pone.0194750</doi><tpages>e0194750</tpages><orcidid>https://orcid.org/0000-0002-1661-0685</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-04, Vol.13 (4), p.e0194750-e0194750 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2020851107 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aerobic exercises Anthropometry Biology and life sciences Body measurements Cardiovascular disease Clinical medicine Diabetes Diabetes mellitus Diabetes mellitus (insulin dependent) Engineering schools Exercise Exhaustion Females Glucose Heart failure Heart rate Hemoglobin Markers Maximum power Measurement Medical schools Medicine Medicine and health sciences Metabolism Mortality Physical fitness Physical Sciences Physical training Physiological aspects Physiology Regression analysis Research and Analysis Methods Studies Type 1 diabetes |
title | Heart rate dynamics during cardio-pulmonary exercise testing are associated with glycemic control in individuals with type 1 diabetes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T05%3A30%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Heart%20rate%20dynamics%20during%20cardio-pulmonary%20exercise%20testing%20are%20associated%20with%20glycemic%20control%20in%20individuals%20with%20type%201%20diabetes&rft.jtitle=PloS%20one&rft.au=Moser,%20Othmar&rft.date=2018-04-02&rft.volume=13&rft.issue=4&rft.spage=e0194750&rft.epage=e0194750&rft.pages=e0194750-e0194750&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0194750&rft_dat=%3Cgale_plos_%3EA533041353%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2020851107&rft_id=info:pmid/29608593&rft_galeid=A533041353&rft_doaj_id=oai_doaj_org_article_46b6808659884410be1b568d589f1976&rfr_iscdi=true |