A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila

Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments sim...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS biology 2018-02, Vol.16 (2), p.e2003174-e2003174
Hauptverfasser: Verd, Berta, Clark, Erik, Wotton, Karl R, Janssens, Hilde, Jiménez-Guri, Eva, Crombach, Anton, Jaeger, Johannes
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e2003174
container_issue 2
container_start_page e2003174
container_title PLoS biology
container_volume 16
creator Verd, Berta
Clark, Erik
Wotton, Karl R
Janssens, Hilde
Jiménez-Guri, Eva
Crombach, Anton
Jaeger, Johannes
description Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.
doi_str_mv 10.1371/journal.pbio.2003174
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2014526916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_80f84b8517e942bbb9db2bc49e8575f3</doaj_id><sourcerecordid>2014526916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJCxx28XfsC9KqfLTSSlzgwMly7MmuV0kc7KSCf4_TTVdtxcHyeOa959GbKYrXGK0xrfDHQ5hib9r1UPuwJghRXLEnxTnmjK8qKfnTe_FZ8SKlA0KEKCKfF2dEMY6lZOfFr03pTDeAK0Oyvm3NGGLpuyEkSOUIOYimLUN0EMvQlzk_QvQZszNDuYMeSvgzREjJ56rvy88xpDDsfWteFs8a0yZ4tdwXxc-vX35cXq22379dX262KysQGVeuqgCYAUQYFoxxiyvFROWYJRZLboUkTeNAKmzBYdcIaZ1hiqtGNIQhRS-Kt0fdoQ1JL64kTRBmnAiFRUZcHxEumIMeou9M_KuD8fo2EeJOmzh624KWqJGslhxXoBip61q5mtSWKZC84g3NWp-W36a6A2ehH7NBD0QfVnq_17two7mkhEqZBT4cBfaPaFebrZ5zCCvKFKE3OGPxEWvTZHUEC9Ga8RZ9esyHoIpoKgRRs_77pcEYfk-QRt35ZCFPtocwzb4gihjncpZ_9wj6f_fY0kQebYrQnLrGSM-beMfS8ybqZRMz7c19o06ku9Wj_wBDPtv4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014526916</pqid></control><display><type>article</type><title>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Verd, Berta ; Clark, Erik ; Wotton, Karl R ; Janssens, Hilde ; Jiménez-Guri, Eva ; Crombach, Anton ; Jaeger, Johannes</creator><creatorcontrib>Verd, Berta ; Clark, Erik ; Wotton, Karl R ; Janssens, Hilde ; Jiménez-Guri, Eva ; Crombach, Anton ; Jaeger, Johannes</creatorcontrib><description>Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2003174</identifier><identifier>PMID: 29451884</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biology and Life Sciences ; Blastoderm ; Computer and Information Sciences ; Computer simulation ; Data collection ; Development Biology ; Drosophila ; Drosophila melanogaster ; Dynamical Systems ; Ecology ; Embryos ; Environmental science ; Evolution ; Gene expression ; Gene regulation ; Genetic oscillators ; Insects ; Life Sciences ; Lorenz, Konrad (1903-89) ; Mathematical models ; Mathematics ; Morphogenic segmentation ; Physical Sciences ; Radiation ; Research and Analysis Methods ; Robustness (mathematics) ; Segmentation ; Segments ; Temporal variations ; Vinegar</subject><ispartof>PLoS biology, 2018-02, Vol.16 (2), p.e2003174-e2003174</ispartof><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Biol 16(2): e2003174. https://doi.org/10.1371/journal.pbio.2003174</rights><rights>info:eu-repo/semantics/openAccess © 2018 Verd et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (&lt;a href="http://creativecommons.org/licenses/by/4.0/"&gt;http://creativecommons.org/licenses/by/4.0/&lt;/a&gt;), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. &lt;a href="http://creativecommons.org/licenses/by/4.0/"&gt;http://creativecommons.org/licenses/by/4.0/&lt;/a&gt;</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 Verd et al 2018 Verd et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Biol 16(2): e2003174. https://doi.org/10.1371/journal.pbio.2003174</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</citedby><cites>FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</cites><orcidid>0000-0002-2568-2103 ; 0000-0002-2889-5120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,26951,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29451884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01934923$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Verd, Berta</creatorcontrib><creatorcontrib>Clark, Erik</creatorcontrib><creatorcontrib>Wotton, Karl R</creatorcontrib><creatorcontrib>Janssens, Hilde</creatorcontrib><creatorcontrib>Jiménez-Guri, Eva</creatorcontrib><creatorcontrib>Crombach, Anton</creatorcontrib><creatorcontrib>Jaeger, Johannes</creatorcontrib><title>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.</description><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Blastoderm</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Data collection</subject><subject>Development Biology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Dynamical Systems</subject><subject>Ecology</subject><subject>Embryos</subject><subject>Environmental science</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genetic oscillators</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Lorenz, Konrad (1903-89)</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Morphogenic segmentation</subject><subject>Physical Sciences</subject><subject>Radiation</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Temporal variations</subject><subject>Vinegar</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJCxx28XfsC9KqfLTSSlzgwMly7MmuV0kc7KSCf4_TTVdtxcHyeOa959GbKYrXGK0xrfDHQ5hib9r1UPuwJghRXLEnxTnmjK8qKfnTe_FZ8SKlA0KEKCKfF2dEMY6lZOfFr03pTDeAK0Oyvm3NGGLpuyEkSOUIOYimLUN0EMvQlzk_QvQZszNDuYMeSvgzREjJ56rvy88xpDDsfWteFs8a0yZ4tdwXxc-vX35cXq22379dX262KysQGVeuqgCYAUQYFoxxiyvFROWYJRZLboUkTeNAKmzBYdcIaZ1hiqtGNIQhRS-Kt0fdoQ1JL64kTRBmnAiFRUZcHxEumIMeou9M_KuD8fo2EeJOmzh624KWqJGslhxXoBip61q5mtSWKZC84g3NWp-W36a6A2ehH7NBD0QfVnq_17two7mkhEqZBT4cBfaPaFebrZ5zCCvKFKE3OGPxEWvTZHUEC9Ga8RZ9esyHoIpoKgRRs_77pcEYfk-QRt35ZCFPtocwzb4gihjncpZ_9wj6f_fY0kQebYrQnLrGSM-beMfS8ybqZRMz7c19o06ku9Wj_wBDPtv4</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Verd, Berta</creator><creator>Clark, Erik</creator><creator>Wotton, Karl R</creator><creator>Janssens, Hilde</creator><creator>Jiménez-Guri, Eva</creator><creator>Crombach, Anton</creator><creator>Jaeger, Johannes</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2568-2103</orcidid><orcidid>https://orcid.org/0000-0002-2889-5120</orcidid></search><sort><creationdate>20180201</creationdate><title>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</title><author>Verd, Berta ; Clark, Erik ; Wotton, Karl R ; Janssens, Hilde ; Jiménez-Guri, Eva ; Crombach, Anton ; Jaeger, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Blastoderm</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Data collection</topic><topic>Development Biology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Dynamical Systems</topic><topic>Ecology</topic><topic>Embryos</topic><topic>Environmental science</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genetic oscillators</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Lorenz, Konrad (1903-89)</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Morphogenic segmentation</topic><topic>Physical Sciences</topic><topic>Radiation</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Temporal variations</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verd, Berta</creatorcontrib><creatorcontrib>Clark, Erik</creatorcontrib><creatorcontrib>Wotton, Karl R</creatorcontrib><creatorcontrib>Janssens, Hilde</creatorcontrib><creatorcontrib>Jiménez-Guri, Eva</creatorcontrib><creatorcontrib>Crombach, Anton</creatorcontrib><creatorcontrib>Jaeger, Johannes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verd, Berta</au><au>Clark, Erik</au><au>Wotton, Karl R</au><au>Janssens, Hilde</au><au>Jiménez-Guri, Eva</au><au>Crombach, Anton</au><au>Jaeger, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>16</volume><issue>2</issue><spage>e2003174</spage><epage>e2003174</epage><pages>e2003174-e2003174</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29451884</pmid><doi>10.1371/journal.pbio.2003174</doi><orcidid>https://orcid.org/0000-0002-2568-2103</orcidid><orcidid>https://orcid.org/0000-0002-2889-5120</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1545-7885
ispartof PLoS biology, 2018-02, Vol.16 (2), p.e2003174-e2003174
issn 1545-7885
1544-9173
1545-7885
language eng
recordid cdi_plos_journals_2014526916
source Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central
subjects Biology
Biology and Life Sciences
Blastoderm
Computer and Information Sciences
Computer simulation
Data collection
Development Biology
Drosophila
Drosophila melanogaster
Dynamical Systems
Ecology
Embryos
Environmental science
Evolution
Gene expression
Gene regulation
Genetic oscillators
Insects
Life Sciences
Lorenz, Konrad (1903-89)
Mathematical models
Mathematics
Morphogenic segmentation
Physical Sciences
Radiation
Research and Analysis Methods
Robustness (mathematics)
Segmentation
Segments
Temporal variations
Vinegar
title A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20damped%20oscillator%20imposes%20temporal%20order%20on%20posterior%20gap%20gene%20expression%20in%20Drosophila&rft.jtitle=PLoS%20biology&rft.au=Verd,%20Berta&rft.date=2018-02-01&rft.volume=16&rft.issue=2&rft.spage=e2003174&rft.epage=e2003174&rft.pages=e2003174-e2003174&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2003174&rft_dat=%3Cproquest_plos_%3E2014526916%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014526916&rft_id=info:pmid/29451884&rft_doaj_id=oai_doaj_org_article_80f84b8517e942bbb9db2bc49e8575f3&rfr_iscdi=true