A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila
Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments sim...
Gespeichert in:
Veröffentlicht in: | PLoS biology 2018-02, Vol.16 (2), p.e2003174-e2003174 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e2003174 |
---|---|
container_issue | 2 |
container_start_page | e2003174 |
container_title | PLoS biology |
container_volume | 16 |
creator | Verd, Berta Clark, Erik Wotton, Karl R Janssens, Hilde Jiménez-Guri, Eva Crombach, Anton Jaeger, Johannes |
description | Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects. |
doi_str_mv | 10.1371/journal.pbio.2003174 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2014526916</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_80f84b8517e942bbb9db2bc49e8575f3</doaj_id><sourcerecordid>2014526916</sourcerecordid><originalsourceid>FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</originalsourceid><addsrcrecordid>eNptUk1v1DAQjRCIlsI_QBCJCxx28XfsC9KqfLTSSlzgwMly7MmuV0kc7KSCf4_TTVdtxcHyeOa959GbKYrXGK0xrfDHQ5hib9r1UPuwJghRXLEnxTnmjK8qKfnTe_FZ8SKlA0KEKCKfF2dEMY6lZOfFr03pTDeAK0Oyvm3NGGLpuyEkSOUIOYimLUN0EMvQlzk_QvQZszNDuYMeSvgzREjJ56rvy88xpDDsfWteFs8a0yZ4tdwXxc-vX35cXq22379dX262KysQGVeuqgCYAUQYFoxxiyvFROWYJRZLboUkTeNAKmzBYdcIaZ1hiqtGNIQhRS-Kt0fdoQ1JL64kTRBmnAiFRUZcHxEumIMeou9M_KuD8fo2EeJOmzh624KWqJGslhxXoBip61q5mtSWKZC84g3NWp-W36a6A2ehH7NBD0QfVnq_17two7mkhEqZBT4cBfaPaFebrZ5zCCvKFKE3OGPxEWvTZHUEC9Ga8RZ9esyHoIpoKgRRs_77pcEYfk-QRt35ZCFPtocwzb4gihjncpZ_9wj6f_fY0kQebYrQnLrGSM-beMfS8ybqZRMz7c19o06ku9Wj_wBDPtv4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014526916</pqid></control><display><type>article</type><title>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>DOAJ Directory of Open Access Journals</source><source>Recercat</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><creator>Verd, Berta ; Clark, Erik ; Wotton, Karl R ; Janssens, Hilde ; Jiménez-Guri, Eva ; Crombach, Anton ; Jaeger, Johannes</creator><creatorcontrib>Verd, Berta ; Clark, Erik ; Wotton, Karl R ; Janssens, Hilde ; Jiménez-Guri, Eva ; Crombach, Anton ; Jaeger, Johannes</creatorcontrib><description>Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.</description><identifier>ISSN: 1545-7885</identifier><identifier>ISSN: 1544-9173</identifier><identifier>EISSN: 1545-7885</identifier><identifier>DOI: 10.1371/journal.pbio.2003174</identifier><identifier>PMID: 29451884</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Biology ; Biology and Life Sciences ; Blastoderm ; Computer and Information Sciences ; Computer simulation ; Data collection ; Development Biology ; Drosophila ; Drosophila melanogaster ; Dynamical Systems ; Ecology ; Embryos ; Environmental science ; Evolution ; Gene expression ; Gene regulation ; Genetic oscillators ; Insects ; Life Sciences ; Lorenz, Konrad (1903-89) ; Mathematical models ; Mathematics ; Morphogenic segmentation ; Physical Sciences ; Radiation ; Research and Analysis Methods ; Robustness (mathematics) ; Segmentation ; Segments ; Temporal variations ; Vinegar</subject><ispartof>PLoS biology, 2018-02, Vol.16 (2), p.e2003174-e2003174</ispartof><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Biol 16(2): e2003174. https://doi.org/10.1371/journal.pbio.2003174</rights><rights>info:eu-repo/semantics/openAccess © 2018 Verd et al. This is an open access article distributed under the terms of the Creative Commons Attribution License (<a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a>), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. <a href="http://creativecommons.org/licenses/by/4.0/">http://creativecommons.org/licenses/by/4.0/</a></rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2018 Verd et al 2018 Verd et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Biol 16(2): e2003174. https://doi.org/10.1371/journal.pbio.2003174</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</citedby><cites>FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</cites><orcidid>0000-0002-2568-2103 ; 0000-0002-2889-5120</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832388/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5832388/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,26951,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29451884$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://inria.hal.science/hal-01934923$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Verd, Berta</creatorcontrib><creatorcontrib>Clark, Erik</creatorcontrib><creatorcontrib>Wotton, Karl R</creatorcontrib><creatorcontrib>Janssens, Hilde</creatorcontrib><creatorcontrib>Jiménez-Guri, Eva</creatorcontrib><creatorcontrib>Crombach, Anton</creatorcontrib><creatorcontrib>Jaeger, Johannes</creatorcontrib><title>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</title><title>PLoS biology</title><addtitle>PLoS Biol</addtitle><description>Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.</description><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Blastoderm</subject><subject>Computer and Information Sciences</subject><subject>Computer simulation</subject><subject>Data collection</subject><subject>Development Biology</subject><subject>Drosophila</subject><subject>Drosophila melanogaster</subject><subject>Dynamical Systems</subject><subject>Ecology</subject><subject>Embryos</subject><subject>Environmental science</subject><subject>Evolution</subject><subject>Gene expression</subject><subject>Gene regulation</subject><subject>Genetic oscillators</subject><subject>Insects</subject><subject>Life Sciences</subject><subject>Lorenz, Konrad (1903-89)</subject><subject>Mathematical models</subject><subject>Mathematics</subject><subject>Morphogenic segmentation</subject><subject>Physical Sciences</subject><subject>Radiation</subject><subject>Research and Analysis Methods</subject><subject>Robustness (mathematics)</subject><subject>Segmentation</subject><subject>Segments</subject><subject>Temporal variations</subject><subject>Vinegar</subject><issn>1545-7885</issn><issn>1544-9173</issn><issn>1545-7885</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>BENPR</sourceid><sourceid>XX2</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1v1DAQjRCIlsI_QBCJCxx28XfsC9KqfLTSSlzgwMly7MmuV0kc7KSCf4_TTVdtxcHyeOa959GbKYrXGK0xrfDHQ5hib9r1UPuwJghRXLEnxTnmjK8qKfnTe_FZ8SKlA0KEKCKfF2dEMY6lZOfFr03pTDeAK0Oyvm3NGGLpuyEkSOUIOYimLUN0EMvQlzk_QvQZszNDuYMeSvgzREjJ56rvy88xpDDsfWteFs8a0yZ4tdwXxc-vX35cXq22379dX262KysQGVeuqgCYAUQYFoxxiyvFROWYJRZLboUkTeNAKmzBYdcIaZ1hiqtGNIQhRS-Kt0fdoQ1JL64kTRBmnAiFRUZcHxEumIMeou9M_KuD8fo2EeJOmzh624KWqJGslhxXoBip61q5mtSWKZC84g3NWp-W36a6A2ehH7NBD0QfVnq_17two7mkhEqZBT4cBfaPaFebrZ5zCCvKFKE3OGPxEWvTZHUEC9Ga8RZ9esyHoIpoKgRRs_77pcEYfk-QRt35ZCFPtocwzb4gihjncpZ_9wj6f_fY0kQebYrQnLrGSM-beMfS8ybqZRMz7c19o06ku9Wj_wBDPtv4</recordid><startdate>20180201</startdate><enddate>20180201</enddate><creator>Verd, Berta</creator><creator>Clark, Erik</creator><creator>Wotton, Karl R</creator><creator>Janssens, Hilde</creator><creator>Jiménez-Guri, Eva</creator><creator>Crombach, Anton</creator><creator>Jaeger, Johannes</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>XX2</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><scope>CZG</scope><orcidid>https://orcid.org/0000-0002-2568-2103</orcidid><orcidid>https://orcid.org/0000-0002-2889-5120</orcidid></search><sort><creationdate>20180201</creationdate><title>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</title><author>Verd, Berta ; Clark, Erik ; Wotton, Karl R ; Janssens, Hilde ; Jiménez-Guri, Eva ; Crombach, Anton ; Jaeger, Johannes</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c602t-d77ee4ae02416445c179467d4c2c185c682ffde891ced1df68cda4959f6f24093</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Blastoderm</topic><topic>Computer and Information Sciences</topic><topic>Computer simulation</topic><topic>Data collection</topic><topic>Development Biology</topic><topic>Drosophila</topic><topic>Drosophila melanogaster</topic><topic>Dynamical Systems</topic><topic>Ecology</topic><topic>Embryos</topic><topic>Environmental science</topic><topic>Evolution</topic><topic>Gene expression</topic><topic>Gene regulation</topic><topic>Genetic oscillators</topic><topic>Insects</topic><topic>Life Sciences</topic><topic>Lorenz, Konrad (1903-89)</topic><topic>Mathematical models</topic><topic>Mathematics</topic><topic>Morphogenic segmentation</topic><topic>Physical Sciences</topic><topic>Radiation</topic><topic>Research and Analysis Methods</topic><topic>Robustness (mathematics)</topic><topic>Segmentation</topic><topic>Segments</topic><topic>Temporal variations</topic><topic>Vinegar</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Verd, Berta</creatorcontrib><creatorcontrib>Clark, Erik</creatorcontrib><creatorcontrib>Wotton, Karl R</creatorcontrib><creatorcontrib>Janssens, Hilde</creatorcontrib><creatorcontrib>Jiménez-Guri, Eva</creatorcontrib><creatorcontrib>Crombach, Anton</creatorcontrib><creatorcontrib>Jaeger, Johannes</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>Recercat</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><collection>PLoS Biology</collection><jtitle>PLoS biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Verd, Berta</au><au>Clark, Erik</au><au>Wotton, Karl R</au><au>Janssens, Hilde</au><au>Jiménez-Guri, Eva</au><au>Crombach, Anton</au><au>Jaeger, Johannes</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila</atitle><jtitle>PLoS biology</jtitle><addtitle>PLoS Biol</addtitle><date>2018-02-01</date><risdate>2018</risdate><volume>16</volume><issue>2</issue><spage>e2003174</spage><epage>e2003174</epage><pages>e2003174-e2003174</pages><issn>1545-7885</issn><issn>1544-9173</issn><eissn>1545-7885</eissn><abstract>Insects determine their body segments in two different ways. Short-germband insects, such as the flour beetle Tribolium castaneum, use a molecular clock to establish segments sequentially. In contrast, long-germband insects, such as the vinegar fly Drosophila melanogaster, determine all segments simultaneously through a hierarchical cascade of gene regulation. Gap genes constitute the first layer of the Drosophila segmentation gene hierarchy, downstream of maternal gradients such as that of Caudal (Cad). We use data-driven mathematical modelling and phase space analysis to show that shifting gap domains in the posterior half of the Drosophila embryo are an emergent property of a robust damped oscillator mechanism, suggesting that the regulatory dynamics underlying long- and short-germband segmentation are much more similar than previously thought. In Tribolium, Cad has been proposed to modulate the frequency of the segmentation oscillator. Surprisingly, our simulations and experiments show that the shift rate of posterior gap domains is independent of maternal Cad levels in Drosophila. Our results suggest a novel evolutionary scenario for the short- to long-germband transition and help explain why this transition occurred convergently multiple times during the radiation of the holometabolan insects.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29451884</pmid><doi>10.1371/journal.pbio.2003174</doi><orcidid>https://orcid.org/0000-0002-2568-2103</orcidid><orcidid>https://orcid.org/0000-0002-2889-5120</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1545-7885 |
ispartof | PLoS biology, 2018-02, Vol.16 (2), p.e2003174-e2003174 |
issn | 1545-7885 1544-9173 1545-7885 |
language | eng |
recordid | cdi_plos_journals_2014526916 |
source | Public Library of Science (PLoS) Journals Open Access; DOAJ Directory of Open Access Journals; Recercat; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central |
subjects | Biology Biology and Life Sciences Blastoderm Computer and Information Sciences Computer simulation Data collection Development Biology Drosophila Drosophila melanogaster Dynamical Systems Ecology Embryos Environmental science Evolution Gene expression Gene regulation Genetic oscillators Insects Life Sciences Lorenz, Konrad (1903-89) Mathematical models Mathematics Morphogenic segmentation Physical Sciences Radiation Research and Analysis Methods Robustness (mathematics) Segmentation Segments Temporal variations Vinegar |
title | A damped oscillator imposes temporal order on posterior gap gene expression in Drosophila |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-14T05%3A00%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20damped%20oscillator%20imposes%20temporal%20order%20on%20posterior%20gap%20gene%20expression%20in%20Drosophila&rft.jtitle=PLoS%20biology&rft.au=Verd,%20Berta&rft.date=2018-02-01&rft.volume=16&rft.issue=2&rft.spage=e2003174&rft.epage=e2003174&rft.pages=e2003174-e2003174&rft.issn=1545-7885&rft.eissn=1545-7885&rft_id=info:doi/10.1371/journal.pbio.2003174&rft_dat=%3Cproquest_plos_%3E2014526916%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014526916&rft_id=info:pmid/29451884&rft_doaj_id=oai_doaj_org_article_80f84b8517e942bbb9db2bc49e8575f3&rfr_iscdi=true |