Detection of epileptic seizure based on entropy analysis of short-term EEG

Entropy measures that assess signals' complexity have drawn increasing attention recently in biomedical field, as they have shown the ability of capturing unique features that are intrinsic and physiologically meaningful. In this study, we applied entropy analysis to electroencephalogram (EEG)...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2018-03, Vol.13 (3), p.e0193691-e0193691
Hauptverfasser: Li, Peng, Karmakar, Chandan, Yearwood, John, Venkatesh, Svetha, Palaniswami, Marimuthu, Liu, Changchun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e0193691
container_issue 3
container_start_page e0193691
container_title PloS one
container_volume 13
creator Li, Peng
Karmakar, Chandan
Yearwood, John
Venkatesh, Svetha
Palaniswami, Marimuthu
Liu, Changchun
description Entropy measures that assess signals' complexity have drawn increasing attention recently in biomedical field, as they have shown the ability of capturing unique features that are intrinsic and physiologically meaningful. In this study, we applied entropy analysis to electroencephalogram (EEG) data to examine its performance in epilepsy detection based on short-term EEG, aiming at establishing a short-term analysis protocol with optimal seizure detection performance. Two classification problems were considered, i.e., 1) classifying interictal and ictal EEGs (epileptic group) from normal EEGs; and 2) classifying ictal from interictal EEGs. For each problem, we explored two protocols to analyze the entropy of EEG: i) using a single analytical window with different window lengths, and ii) using an average of multiple windows for each window length. Two entropy methods-fuzzy entropy (FuzzyEn) and distribution entropy (DistEn)-were used that have valid outputs for any given data lengths. We performed feature selection and trained classifiers based on a cross-validation process. The results show that performance of FuzzyEn and DistEn may complement each other and the best performance can be achieved by combining: 1) FuzzyEn of one 5-s window and the averaged DistEn of five 1-s windows for classifying normal from epileptic group (accuracy: 0.93, sensitivity: 0.91, specificity: 0.96); and 2) the averaged FuzzyEn of five 1-s windows and DistEn of one 5-s window for classifying ictal from interictal EEGs (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90). Further studies are warranted to examine whether this proposed short-term analysis procedure can help track the epileptic activities in real time and provide prompt feedback for clinical practices.
doi_str_mv 10.1371/journal.pone.0193691
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2014445134</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A531127134</galeid><doaj_id>oai_doaj_org_article_38e445075a5146fcb57fb15e8ad48c7f</doaj_id><sourcerecordid>A531127134</sourcerecordid><originalsourceid>FETCH-LOGICAL-c809t-ca1ca9408a68c75b3476a47df44dfd0ee3685944d76fe3e6016fa6ed406585843</originalsourceid><addsrcrecordid>eNqNkluL1DAYhoso7rr6D0QLgujFjElzaHsjLOu4jiwseLoNafplJkPbdJNUHH-9qdNdprIXkoukzfN-p7xJ8hyjJSY5frezg-tks-xtB0uES8JL_CA5jYdswTNEHh6dT5In3u8QYqTg_HFykpWMkiJjp8nnDxBABWO71OoUetNAH4xKPZjfg4O0kh7qNN5CF5zt96mMOffe-BH3W-vCIoBr09Xq8mnySMvGw7NpP0u-f1x9u_i0uLq-XF-cXy1UgcqwUBIrWVJUSF6onFWE5lzSvNaU1rpGAIQXrIwfOddAgCPMteRQU8RZwQpKzpKXh7h9Y72YxuBFhjCllGEyEusDUVu5E70zrXR7YaURf39YtxHSxS4bEKSAKEI5kwxTrlXFcl1hBoWsaSxPx1jvp2xD1UKtxjnIZhZ0ftOZrdjYnyIWSykai3kzBXD2ZgAfRGu8gqaRHdjhUHfJMM_KiL76B72_u4nayNiA6bSNedUYVJwzgnGWH6jlPVRcNbRGRc_o-NRzwduZIDIBfoWNHLwX669f_p-9_jFnXx-xW5BN2HrbDKPn_BykB1A5670DfTdkjMRo-dtpiNHyYrJ8lL04fqA70a3HyR-EGPoZ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014445134</pqid></control><display><type>article</type><title>Detection of epileptic seizure based on entropy analysis of short-term EEG</title><source>DOAJ Directory of Open Access Journals</source><source>Public Library of Science (PLoS) Journals Open Access</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Li, Peng ; Karmakar, Chandan ; Yearwood, John ; Venkatesh, Svetha ; Palaniswami, Marimuthu ; Liu, Changchun</creator><contributor>Bazhenov, Maxim</contributor><creatorcontrib>Li, Peng ; Karmakar, Chandan ; Yearwood, John ; Venkatesh, Svetha ; Palaniswami, Marimuthu ; Liu, Changchun ; Bazhenov, Maxim</creatorcontrib><description>Entropy measures that assess signals' complexity have drawn increasing attention recently in biomedical field, as they have shown the ability of capturing unique features that are intrinsic and physiologically meaningful. In this study, we applied entropy analysis to electroencephalogram (EEG) data to examine its performance in epilepsy detection based on short-term EEG, aiming at establishing a short-term analysis protocol with optimal seizure detection performance. Two classification problems were considered, i.e., 1) classifying interictal and ictal EEGs (epileptic group) from normal EEGs; and 2) classifying ictal from interictal EEGs. For each problem, we explored two protocols to analyze the entropy of EEG: i) using a single analytical window with different window lengths, and ii) using an average of multiple windows for each window length. Two entropy methods-fuzzy entropy (FuzzyEn) and distribution entropy (DistEn)-were used that have valid outputs for any given data lengths. We performed feature selection and trained classifiers based on a cross-validation process. The results show that performance of FuzzyEn and DistEn may complement each other and the best performance can be achieved by combining: 1) FuzzyEn of one 5-s window and the averaged DistEn of five 1-s windows for classifying normal from epileptic group (accuracy: 0.93, sensitivity: 0.91, specificity: 0.96); and 2) the averaged FuzzyEn of five 1-s windows and DistEn of one 5-s window for classifying ictal from interictal EEGs (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90). Further studies are warranted to examine whether this proposed short-term analysis procedure can help track the epileptic activities in real time and provide prompt feedback for clinical practices.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0193691</identifier><identifier>PMID: 29543825</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Algorithms ; Analysis ; Biology and Life Sciences ; Classification ; Computer and Information Sciences ; Diagnosis ; EEG ; Electroencephalography ; Engineering ; Engineering and Technology ; Entropy ; Epilepsy ; Information technology ; Medicine and Health Sciences ; Pattern recognition ; Physical Sciences ; Physiology ; Research and Analysis Methods ; Risk factors ; Seizures ; Sensitivity ; Short term ; Signal processing ; Wavelet transforms</subject><ispartof>PloS one, 2018-03, Vol.13 (3), p.e0193691-e0193691</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Li et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Li et al 2018 Li et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c809t-ca1ca9408a68c75b3476a47df44dfd0ee3685944d76fe3e6016fa6ed406585843</citedby><cites>FETCH-LOGICAL-c809t-ca1ca9408a68c75b3476a47df44dfd0ee3685944d76fe3e6016fa6ed406585843</cites><orcidid>0000-0002-4684-4909</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854404/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5854404/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793,79600,79601</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29543825$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Bazhenov, Maxim</contributor><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Karmakar, Chandan</creatorcontrib><creatorcontrib>Yearwood, John</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Palaniswami, Marimuthu</creatorcontrib><creatorcontrib>Liu, Changchun</creatorcontrib><title>Detection of epileptic seizure based on entropy analysis of short-term EEG</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Entropy measures that assess signals' complexity have drawn increasing attention recently in biomedical field, as they have shown the ability of capturing unique features that are intrinsic and physiologically meaningful. In this study, we applied entropy analysis to electroencephalogram (EEG) data to examine its performance in epilepsy detection based on short-term EEG, aiming at establishing a short-term analysis protocol with optimal seizure detection performance. Two classification problems were considered, i.e., 1) classifying interictal and ictal EEGs (epileptic group) from normal EEGs; and 2) classifying ictal from interictal EEGs. For each problem, we explored two protocols to analyze the entropy of EEG: i) using a single analytical window with different window lengths, and ii) using an average of multiple windows for each window length. Two entropy methods-fuzzy entropy (FuzzyEn) and distribution entropy (DistEn)-were used that have valid outputs for any given data lengths. We performed feature selection and trained classifiers based on a cross-validation process. The results show that performance of FuzzyEn and DistEn may complement each other and the best performance can be achieved by combining: 1) FuzzyEn of one 5-s window and the averaged DistEn of five 1-s windows for classifying normal from epileptic group (accuracy: 0.93, sensitivity: 0.91, specificity: 0.96); and 2) the averaged FuzzyEn of five 1-s windows and DistEn of one 5-s window for classifying ictal from interictal EEGs (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90). Further studies are warranted to examine whether this proposed short-term analysis procedure can help track the epileptic activities in real time and provide prompt feedback for clinical practices.</description><subject>Algorithms</subject><subject>Analysis</subject><subject>Biology and Life Sciences</subject><subject>Classification</subject><subject>Computer and Information Sciences</subject><subject>Diagnosis</subject><subject>EEG</subject><subject>Electroencephalography</subject><subject>Engineering</subject><subject>Engineering and Technology</subject><subject>Entropy</subject><subject>Epilepsy</subject><subject>Information technology</subject><subject>Medicine and Health Sciences</subject><subject>Pattern recognition</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Research and Analysis Methods</subject><subject>Risk factors</subject><subject>Seizures</subject><subject>Sensitivity</subject><subject>Short term</subject><subject>Signal processing</subject><subject>Wavelet transforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkluL1DAYhoso7rr6D0QLgujFjElzaHsjLOu4jiwseLoNafplJkPbdJNUHH-9qdNdprIXkoukzfN-p7xJ8hyjJSY5frezg-tks-xtB0uES8JL_CA5jYdswTNEHh6dT5In3u8QYqTg_HFykpWMkiJjp8nnDxBABWO71OoUetNAH4xKPZjfg4O0kh7qNN5CF5zt96mMOffe-BH3W-vCIoBr09Xq8mnySMvGw7NpP0u-f1x9u_i0uLq-XF-cXy1UgcqwUBIrWVJUSF6onFWE5lzSvNaU1rpGAIQXrIwfOddAgCPMteRQU8RZwQpKzpKXh7h9Y72YxuBFhjCllGEyEusDUVu5E70zrXR7YaURf39YtxHSxS4bEKSAKEI5kwxTrlXFcl1hBoWsaSxPx1jvp2xD1UKtxjnIZhZ0ftOZrdjYnyIWSykai3kzBXD2ZgAfRGu8gqaRHdjhUHfJMM_KiL76B72_u4nayNiA6bSNedUYVJwzgnGWH6jlPVRcNbRGRc_o-NRzwduZIDIBfoWNHLwX669f_p-9_jFnXx-xW5BN2HrbDKPn_BykB1A5670DfTdkjMRo-dtpiNHyYrJ8lL04fqA70a3HyR-EGPoZ</recordid><startdate>20180315</startdate><enddate>20180315</enddate><creator>Li, Peng</creator><creator>Karmakar, Chandan</creator><creator>Yearwood, John</creator><creator>Venkatesh, Svetha</creator><creator>Palaniswami, Marimuthu</creator><creator>Liu, Changchun</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-4684-4909</orcidid></search><sort><creationdate>20180315</creationdate><title>Detection of epileptic seizure based on entropy analysis of short-term EEG</title><author>Li, Peng ; Karmakar, Chandan ; Yearwood, John ; Venkatesh, Svetha ; Palaniswami, Marimuthu ; Liu, Changchun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c809t-ca1ca9408a68c75b3476a47df44dfd0ee3685944d76fe3e6016fa6ed406585843</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Algorithms</topic><topic>Analysis</topic><topic>Biology and Life Sciences</topic><topic>Classification</topic><topic>Computer and Information Sciences</topic><topic>Diagnosis</topic><topic>EEG</topic><topic>Electroencephalography</topic><topic>Engineering</topic><topic>Engineering and Technology</topic><topic>Entropy</topic><topic>Epilepsy</topic><topic>Information technology</topic><topic>Medicine and Health Sciences</topic><topic>Pattern recognition</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Research and Analysis Methods</topic><topic>Risk factors</topic><topic>Seizures</topic><topic>Sensitivity</topic><topic>Short term</topic><topic>Signal processing</topic><topic>Wavelet transforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Peng</creatorcontrib><creatorcontrib>Karmakar, Chandan</creatorcontrib><creatorcontrib>Yearwood, John</creatorcontrib><creatorcontrib>Venkatesh, Svetha</creatorcontrib><creatorcontrib>Palaniswami, Marimuthu</creatorcontrib><creatorcontrib>Liu, Changchun</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Access via ProQuest (Open Access)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Peng</au><au>Karmakar, Chandan</au><au>Yearwood, John</au><au>Venkatesh, Svetha</au><au>Palaniswami, Marimuthu</au><au>Liu, Changchun</au><au>Bazhenov, Maxim</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Detection of epileptic seizure based on entropy analysis of short-term EEG</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-03-15</date><risdate>2018</risdate><volume>13</volume><issue>3</issue><spage>e0193691</spage><epage>e0193691</epage><pages>e0193691-e0193691</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Entropy measures that assess signals' complexity have drawn increasing attention recently in biomedical field, as they have shown the ability of capturing unique features that are intrinsic and physiologically meaningful. In this study, we applied entropy analysis to electroencephalogram (EEG) data to examine its performance in epilepsy detection based on short-term EEG, aiming at establishing a short-term analysis protocol with optimal seizure detection performance. Two classification problems were considered, i.e., 1) classifying interictal and ictal EEGs (epileptic group) from normal EEGs; and 2) classifying ictal from interictal EEGs. For each problem, we explored two protocols to analyze the entropy of EEG: i) using a single analytical window with different window lengths, and ii) using an average of multiple windows for each window length. Two entropy methods-fuzzy entropy (FuzzyEn) and distribution entropy (DistEn)-were used that have valid outputs for any given data lengths. We performed feature selection and trained classifiers based on a cross-validation process. The results show that performance of FuzzyEn and DistEn may complement each other and the best performance can be achieved by combining: 1) FuzzyEn of one 5-s window and the averaged DistEn of five 1-s windows for classifying normal from epileptic group (accuracy: 0.93, sensitivity: 0.91, specificity: 0.96); and 2) the averaged FuzzyEn of five 1-s windows and DistEn of one 5-s window for classifying ictal from interictal EEGs (accuracy: 0.91, sensitivity: 0.93, specificity: 0.90). Further studies are warranted to examine whether this proposed short-term analysis procedure can help track the epileptic activities in real time and provide prompt feedback for clinical practices.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29543825</pmid><doi>10.1371/journal.pone.0193691</doi><tpages>e0193691</tpages><orcidid>https://orcid.org/0000-0002-4684-4909</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2018-03, Vol.13 (3), p.e0193691-e0193691
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2014445134
source DOAJ Directory of Open Access Journals; Public Library of Science (PLoS) Journals Open Access; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Algorithms
Analysis
Biology and Life Sciences
Classification
Computer and Information Sciences
Diagnosis
EEG
Electroencephalography
Engineering
Engineering and Technology
Entropy
Epilepsy
Information technology
Medicine and Health Sciences
Pattern recognition
Physical Sciences
Physiology
Research and Analysis Methods
Risk factors
Seizures
Sensitivity
Short term
Signal processing
Wavelet transforms
title Detection of epileptic seizure based on entropy analysis of short-term EEG
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T00%3A53%3A04IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Detection%20of%20epileptic%20seizure%20based%20on%20entropy%20analysis%20of%20short-term%20EEG&rft.jtitle=PloS%20one&rft.au=Li,%20Peng&rft.date=2018-03-15&rft.volume=13&rft.issue=3&rft.spage=e0193691&rft.epage=e0193691&rft.pages=e0193691-e0193691&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0193691&rft_dat=%3Cgale_plos_%3EA531127134%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014445134&rft_id=info:pmid/29543825&rft_galeid=A531127134&rft_doaj_id=oai_doaj_org_article_38e445075a5146fcb57fb15e8ad48c7f&rfr_iscdi=true