Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions

The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PloS one 2014-08, Vol.9 (8), p.e106115-e106115
Hauptverfasser: Lam, Hanh N, Chakravarthy, Suma, Wei, Hai-Lei, BuiNguyen, HoangChuong, Stodghill, Paul V, Collmer, Alan, Swingle, Bryan M, Cartinhour, Samuel W
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e106115
container_issue 8
container_start_page e106115
container_title PloS one
container_volume 9
creator Lam, Hanh N
Chakravarthy, Suma
Wei, Hai-Lei
BuiNguyen, HoangChuong
Stodghill, Paul V
Collmer, Alan
Swingle, Bryan M
Cartinhour, Samuel W
description The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.
doi_str_mv 10.1371/journal.pone.0106115
format Article
fullrecord <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2014374893</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_df1e713f113c413fa97e0f319c470bef</doaj_id><sourcerecordid>2014374893</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-f3d3dbcbf1af436c01bf9e5bee7d20c21a17a4b14ef9a61af88c3b452656cdca3</originalsourceid><addsrcrecordid>eNptklFv0zAQxyMEYmPwDRBY4mUvLb7YSZoXpKmMbVIleIBny3HOravEDrbTqZ-DL4y7ZtWGeLrT-f__2ee7LHsPdA6sgs9bN3oru_ngLM4p0BKgeJGdQ83yWZlT9vJJfpa9CWFLacEWZfk6O8sLqGjN-Hn256ZzjeyITKh9MIE4TeIGya0fVsTjeuycJcY-1IZO2kgGGTdujZb8CDi2rndWBhL23ti1TJrdnETXy-jI1yWjlCbIDmUXiMX7E7DHvkEfyL2JG9KaXcqR6NGqaJwNb7NXOjnw3RQvsl_frn8ub2er7zd3y6vVTBV5GWeataxtVKNBas5KRaHRNRYNYtXmVOUgoZK8AY66lmUSLRaKNTx5i1K1SrKL7OORO3QuiOk_g8gpcFbxRc2S4u6oaJ3cisGbXvq9cNKIh4LzayF9NKpD0WrACpgGYIqnKOsKqWZQK17RBnVifZluG5seW4U2etk9gz4_sWYj1m4nOPC6gDIBLieAd79HDFH0Jijs0lTQjUFAUdTlYa55kn76R_r_7vhRpbwLwaM-PQaoOOzYo0scdkxMO5ZsH542cjI9LhX7C0MW0x0</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2014374893</pqid></control><display><type>article</type><title>Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Public Library of Science (PLoS)</source><creator>Lam, Hanh N ; Chakravarthy, Suma ; Wei, Hai-Lei ; BuiNguyen, HoangChuong ; Stodghill, Paul V ; Collmer, Alan ; Swingle, Bryan M ; Cartinhour, Samuel W</creator><creatorcontrib>Lam, Hanh N ; Chakravarthy, Suma ; Wei, Hai-Lei ; BuiNguyen, HoangChuong ; Stodghill, Paul V ; Collmer, Alan ; Swingle, Bryan M ; Cartinhour, Samuel W</creatorcontrib><description>The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0106115</identifier><identifier>PMID: 25170934</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Arabidopsis ; Bacterial Proteins - genetics ; Binding sites ; Binding Sites - genetics ; Biology ; Biology and Life Sciences ; Chromatin ; Chromatin Immunoprecipitation - methods ; DNA-Binding Proteins - genetics ; E coli ; Escherichia coli ; Gene expression ; Gene Expression Regulation, Bacterial - genetics ; Gene sequencing ; Genes ; Genomes ; Genomics ; Hypersensitive response ; Identification ; Immunoprecipitation ; mRNA ; Next-generation sequencing ; Pathogens ; Plant pathology ; Promoter Regions, Genetic - genetics ; Promoters ; Proteins ; Pseudomonas ; Pseudomonas syringae ; Pseudomonas syringae - genetics ; Regulators ; Regulon - genetics ; Ribonucleic acid ; RNA ; RNA, Messenger - genetics ; Sigma factor ; Sigma Factor - genetics ; Solanum lycopersicum - microbiology ; Tomatoes ; Type III Secretion Systems - genetics ; Virulence ; Virulence - genetics</subject><ispartof>PloS one, 2014-08, Vol.9 (8), p.e106115-e106115</ispartof><rights>2014. This is an open-access article, free of all copyright, and may be freely reproduced, distributed, transmitted, modified, built upon, or otherwise used by anyone for any lawful purpose. The work is made available under the Creative Commons CC0 public domain dedication. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-f3d3dbcbf1af436c01bf9e5bee7d20c21a17a4b14ef9a61af88c3b452656cdca3</citedby><cites>FETCH-LOGICAL-c526t-f3d3dbcbf1af436c01bf9e5bee7d20c21a17a4b14ef9a61af88c3b452656cdca3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149516/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC4149516/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79569,79570</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25170934$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lam, Hanh N</creatorcontrib><creatorcontrib>Chakravarthy, Suma</creatorcontrib><creatorcontrib>Wei, Hai-Lei</creatorcontrib><creatorcontrib>BuiNguyen, HoangChuong</creatorcontrib><creatorcontrib>Stodghill, Paul V</creatorcontrib><creatorcontrib>Collmer, Alan</creatorcontrib><creatorcontrib>Swingle, Bryan M</creatorcontrib><creatorcontrib>Cartinhour, Samuel W</creatorcontrib><title>Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.</description><subject>Agriculture</subject><subject>Arabidopsis</subject><subject>Bacterial Proteins - genetics</subject><subject>Binding sites</subject><subject>Binding Sites - genetics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Chromatin</subject><subject>Chromatin Immunoprecipitation - methods</subject><subject>DNA-Binding Proteins - genetics</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Bacterial - genetics</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Hypersensitive response</subject><subject>Identification</subject><subject>Immunoprecipitation</subject><subject>mRNA</subject><subject>Next-generation sequencing</subject><subject>Pathogens</subject><subject>Plant pathology</subject><subject>Promoter Regions, Genetic - genetics</subject><subject>Promoters</subject><subject>Proteins</subject><subject>Pseudomonas</subject><subject>Pseudomonas syringae</subject><subject>Pseudomonas syringae - genetics</subject><subject>Regulators</subject><subject>Regulon - genetics</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA, Messenger - genetics</subject><subject>Sigma factor</subject><subject>Sigma Factor - genetics</subject><subject>Solanum lycopersicum - microbiology</subject><subject>Tomatoes</subject><subject>Type III Secretion Systems - genetics</subject><subject>Virulence</subject><subject>Virulence - genetics</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNptklFv0zAQxyMEYmPwDRBY4mUvLb7YSZoXpKmMbVIleIBny3HOravEDrbTqZ-DL4y7ZtWGeLrT-f__2ee7LHsPdA6sgs9bN3oru_ngLM4p0BKgeJGdQ83yWZlT9vJJfpa9CWFLacEWZfk6O8sLqGjN-Hn256ZzjeyITKh9MIE4TeIGya0fVsTjeuycJcY-1IZO2kgGGTdujZb8CDi2rndWBhL23ti1TJrdnETXy-jI1yWjlCbIDmUXiMX7E7DHvkEfyL2JG9KaXcqR6NGqaJwNb7NXOjnw3RQvsl_frn8ub2er7zd3y6vVTBV5GWeataxtVKNBas5KRaHRNRYNYtXmVOUgoZK8AY66lmUSLRaKNTx5i1K1SrKL7OORO3QuiOk_g8gpcFbxRc2S4u6oaJ3cisGbXvq9cNKIh4LzayF9NKpD0WrACpgGYIqnKOsKqWZQK17RBnVifZluG5seW4U2etk9gz4_sWYj1m4nOPC6gDIBLieAd79HDFH0Jijs0lTQjUFAUdTlYa55kn76R_r_7vhRpbwLwaM-PQaoOOzYo0scdkxMO5ZsH542cjI9LhX7C0MW0x0</recordid><startdate>20140829</startdate><enddate>20140829</enddate><creator>Lam, Hanh N</creator><creator>Chakravarthy, Suma</creator><creator>Wei, Hai-Lei</creator><creator>BuiNguyen, HoangChuong</creator><creator>Stodghill, Paul V</creator><creator>Collmer, Alan</creator><creator>Swingle, Bryan M</creator><creator>Cartinhour, Samuel W</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20140829</creationdate><title>Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions</title><author>Lam, Hanh N ; Chakravarthy, Suma ; Wei, Hai-Lei ; BuiNguyen, HoangChuong ; Stodghill, Paul V ; Collmer, Alan ; Swingle, Bryan M ; Cartinhour, Samuel W</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-f3d3dbcbf1af436c01bf9e5bee7d20c21a17a4b14ef9a61af88c3b452656cdca3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Agriculture</topic><topic>Arabidopsis</topic><topic>Bacterial Proteins - genetics</topic><topic>Binding sites</topic><topic>Binding Sites - genetics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Chromatin</topic><topic>Chromatin Immunoprecipitation - methods</topic><topic>DNA-Binding Proteins - genetics</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Bacterial - genetics</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Hypersensitive response</topic><topic>Identification</topic><topic>Immunoprecipitation</topic><topic>mRNA</topic><topic>Next-generation sequencing</topic><topic>Pathogens</topic><topic>Plant pathology</topic><topic>Promoter Regions, Genetic - genetics</topic><topic>Promoters</topic><topic>Proteins</topic><topic>Pseudomonas</topic><topic>Pseudomonas syringae</topic><topic>Pseudomonas syringae - genetics</topic><topic>Regulators</topic><topic>Regulon - genetics</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA, Messenger - genetics</topic><topic>Sigma factor</topic><topic>Sigma Factor - genetics</topic><topic>Solanum lycopersicum - microbiology</topic><topic>Tomatoes</topic><topic>Type III Secretion Systems - genetics</topic><topic>Virulence</topic><topic>Virulence - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lam, Hanh N</creatorcontrib><creatorcontrib>Chakravarthy, Suma</creatorcontrib><creatorcontrib>Wei, Hai-Lei</creatorcontrib><creatorcontrib>BuiNguyen, HoangChuong</creatorcontrib><creatorcontrib>Stodghill, Paul V</creatorcontrib><creatorcontrib>Collmer, Alan</creatorcontrib><creatorcontrib>Swingle, Bryan M</creatorcontrib><creatorcontrib>Cartinhour, Samuel W</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological &amp; Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Meteorological &amp; Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lam, Hanh N</au><au>Chakravarthy, Suma</au><au>Wei, Hai-Lei</au><au>BuiNguyen, HoangChuong</au><au>Stodghill, Paul V</au><au>Collmer, Alan</au><au>Swingle, Bryan M</au><au>Cartinhour, Samuel W</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2014-08-29</date><risdate>2014</risdate><volume>9</volume><issue>8</issue><spage>e106115</spage><epage>e106115</epage><pages>e106115-e106115</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The type III secretion system (T3SS) is required for virulence in the gram-negative plant pathogen Pseudomonas syringae pv. tomato DC3000. The alternative sigma factor HrpL directly regulates expression of T3SS genes via a promoter sequence, often designated as the "hrp promoter." Although the HrpL regulon has been extensively investigated in DC3000, it is not known whether additional regulon members remain to be found. To systematically search for HrpL-regulated genes, we used chromatin immunoprecipitation coupled with high-throughput sequencing (ChIP-Seq) and bulk mRNA sequencing (RNA-Seq) to identify HrpL-binding sites and likely hrp promoters. The analysis recovered 73 sites of interest, including 20 sites that represent new hrp promoters. The new promoters lie upstream of a diverse set of genes encoding potential regulators, enzymes and hypothetical proteins. PSPTO_5633 is the only new HrpL regulon member that is potentially an effector and is now designated HopBM1. Deletions in several other new regulon members, including PSPTO_5633, PSPTO_0371, PSPTO_2130, PSPTO_2691, PSPTO_2696, PSPTO_3331, and PSPTO_5240, in either DC3000 or ΔhopQ1-1 backgrounds, do not affect the hypersensitive response or in planta growth of the resulting strains. Many new HrpL regulon members appear to be unrelated to the T3SS, and orthologs for some of these can be identified in numerous non-pathogenic bacteria. With the identification of 20 new hrp promoters, the list of HrpL regulon members is approaching saturation and most likely includes all DC3000 effectors.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>25170934</pmid><doi>10.1371/journal.pone.0106115</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1932-6203
ispartof PloS one, 2014-08, Vol.9 (8), p.e106115-e106115
issn 1932-6203
1932-6203
language eng
recordid cdi_plos_journals_2014374893
source MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Free Full-Text Journals in Chemistry; Public Library of Science (PLoS)
subjects Agriculture
Arabidopsis
Bacterial Proteins - genetics
Binding sites
Binding Sites - genetics
Biology
Biology and Life Sciences
Chromatin
Chromatin Immunoprecipitation - methods
DNA-Binding Proteins - genetics
E coli
Escherichia coli
Gene expression
Gene Expression Regulation, Bacterial - genetics
Gene sequencing
Genes
Genomes
Genomics
Hypersensitive response
Identification
Immunoprecipitation
mRNA
Next-generation sequencing
Pathogens
Plant pathology
Promoter Regions, Genetic - genetics
Promoters
Proteins
Pseudomonas
Pseudomonas syringae
Pseudomonas syringae - genetics
Regulators
Regulon - genetics
Ribonucleic acid
RNA
RNA, Messenger - genetics
Sigma factor
Sigma Factor - genetics
Solanum lycopersicum - microbiology
Tomatoes
Type III Secretion Systems - genetics
Virulence
Virulence - genetics
title Global analysis of the HrpL regulon in the plant pathogen Pseudomonas syringae pv. tomato DC3000 reveals new regulon members with diverse functions
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-15T17%3A38%3A26IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Global%20analysis%20of%20the%20HrpL%20regulon%20in%20the%20plant%20pathogen%20Pseudomonas%20syringae%20pv.%20tomato%20DC3000%20reveals%20new%20regulon%20members%20with%20diverse%20functions&rft.jtitle=PloS%20one&rft.au=Lam,%20Hanh%20N&rft.date=2014-08-29&rft.volume=9&rft.issue=8&rft.spage=e106115&rft.epage=e106115&rft.pages=e106115-e106115&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0106115&rft_dat=%3Cproquest_plos_%3E2014374893%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2014374893&rft_id=info:pmid/25170934&rft_doaj_id=oai_doaj_org_article_df1e713f113c413fa97e0f319c470bef&rfr_iscdi=true