Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice
The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabin...
Gespeichert in:
Veröffentlicht in: | PloS one 2012-04, Vol.7 (4), p.e34129 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | |
---|---|
container_issue | 4 |
container_start_page | e34129 |
container_title | PloS one |
container_volume | 7 |
creator | Long, Leonora E Chesworth, Rose Huang, Xu-Feng Wong, Alexander Spiro, Adena McGregor, Iain S Arnold, Jonathon C Karl, Tim |
description | The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes. |
doi_str_mv | 10.1371/journal.pone.0034129 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2009660085</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A477149888</galeid><doaj_id>oai_doaj_org_article_69c3ecc4cc634d11bc40653edef597cb</doaj_id><sourcerecordid>A477149888</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6589-f6e00417f81595675dcb2a877ec7b353b5c0b88e0fed18818089c5dfa4d6ab5c3</originalsourceid><addsrcrecordid>eNqNkl1r2zAYhc3YWLtu_2BshkFhF8kky_q6GZR2H4FCYV-3QpZfJQq2lFpy2f79lMUtMWwwfCHx6jlH4vgUxUuMlphw_G4bxsHrbrkLHpYIkRpX8lFxiiWpFqxC5PHR_qR4FuMWIUoEY0-Lk6qiSFacnBb6ysXkvEmlh3EIDWz0ncvOuivBWjAplsGWRnuvG9e60JXOl2nQPvbQN3mFsg29zsO9HtZjl7e47MekfSp7Z-B58cTqLsKLaT0rvn_88O3y8-L65tPq8uJ6YRgVcmEZIFRjbgWmkjJOW9NUWnAOhjeEkoYa1AgByEKLhcACCWloa3XdMp0PyVnx-uC760JUUzpRVQhJxhASNBOrA9EGvVW7wfV6-KWCdurPIAxrpYfkTAeKSUPAmNoYRuoW48bUiFECLVgquWmy1_vptrHpoTXgcyjdzHR-4t1GrcOdIgRzWVXZ4M1kMITbEWL6x5Mnaq3zq5y3IZuZ3kWjLmrOcS2FEJla_oXKXwv5D-R-WJfnM8HbmSAzCX6mtR5jVKuvX_6fvfkxZ8-P2A3oLm1i6Mbkgo9zsD6AZggxDmAfksNI7et9n4ba11tN9c6yV8epP4ju-0x-AwqO9vk</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009660085</pqid></control><display><type>article</type><title>Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice</title><source>MEDLINE</source><source>Public Library of Science</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Long, Leonora E ; Chesworth, Rose ; Huang, Xu-Feng ; Wong, Alexander ; Spiro, Adena ; McGregor, Iain S ; Arnold, Jonathon C ; Karl, Tim</creator><contributor>Hashimoto, Kenji</contributor><creatorcontrib>Long, Leonora E ; Chesworth, Rose ; Huang, Xu-Feng ; Wong, Alexander ; Spiro, Adena ; McGregor, Iain S ; Arnold, Jonathon C ; Karl, Tim ; Hashimoto, Kenji</creatorcontrib><description>The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0034129</identifier><identifier>PMID: 22509273</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Animals ; Antipsychotics ; Anxiety ; Anxiety - chemically induced ; Autoradiography ; Behavior, Animal - drug effects ; Behavior, Animal - physiology ; Binding ; Biology ; Blood ; Brain research ; Cannabidiol - blood ; Cannabidiol - pharmacology ; Cannabinoids ; Cannabis ; Cell Membrane - metabolism ; Chromatography ; Constituents ; Drug dosages ; Exploratory Behavior - drug effects ; Female ; Genotype & phenotype ; Genotypes ; Hyperactivity ; Locomotion - drug effects ; Male ; Marijuana ; Mass spectrometry ; Medicine ; Mental disorders ; Mice ; Mutation ; Neuregulin ; Neuregulin 1 ; Neuregulin-1 - chemistry ; Neuregulin-1 - genetics ; Neuregulin-1 - metabolism ; Neurosciences ; Pharmacokinetics ; Pharmacology ; Plasma ; Protein Structure, Tertiary ; Psychopharmacology ; Psychotropic drugs ; Receptor density ; Receptor, Serotonin, 5-HT2A - metabolism ; Rodents ; Schizophrenia ; Scientific imaging ; Sensory Gating - drug effects ; Serotonin S2 receptors ; Social aspects ; Social behavior ; Studies ; Substantia nigra ; Tetrahydrocannabinol ; Time Factors ; Tranquilizing drugs ; Transmembrane domains ; Withdrawal ; γ-Aminobutyric acid A receptors</subject><ispartof>PloS one, 2012-04, Vol.7 (4), p.e34129</ispartof><rights>COPYRIGHT 2012 Public Library of Science</rights><rights>2012 Long et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License: https://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Long et al. 2012</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6589-f6e00417f81595675dcb2a877ec7b353b5c0b88e0fed18818089c5dfa4d6ab5c3</citedby><cites>FETCH-LOGICAL-c6589-f6e00417f81595675dcb2a877ec7b353b5c0b88e0fed18818089c5dfa4d6ab5c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317922/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC3317922/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2102,2928,23866,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/22509273$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Hashimoto, Kenji</contributor><creatorcontrib>Long, Leonora E</creatorcontrib><creatorcontrib>Chesworth, Rose</creatorcontrib><creatorcontrib>Huang, Xu-Feng</creatorcontrib><creatorcontrib>Wong, Alexander</creatorcontrib><creatorcontrib>Spiro, Adena</creatorcontrib><creatorcontrib>McGregor, Iain S</creatorcontrib><creatorcontrib>Arnold, Jonathon C</creatorcontrib><creatorcontrib>Karl, Tim</creatorcontrib><title>Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.</description><subject>Animals</subject><subject>Antipsychotics</subject><subject>Anxiety</subject><subject>Anxiety - chemically induced</subject><subject>Autoradiography</subject><subject>Behavior, Animal - drug effects</subject><subject>Behavior, Animal - physiology</subject><subject>Binding</subject><subject>Biology</subject><subject>Blood</subject><subject>Brain research</subject><subject>Cannabidiol - blood</subject><subject>Cannabidiol - pharmacology</subject><subject>Cannabinoids</subject><subject>Cannabis</subject><subject>Cell Membrane - metabolism</subject><subject>Chromatography</subject><subject>Constituents</subject><subject>Drug dosages</subject><subject>Exploratory Behavior - drug effects</subject><subject>Female</subject><subject>Genotype & phenotype</subject><subject>Genotypes</subject><subject>Hyperactivity</subject><subject>Locomotion - drug effects</subject><subject>Male</subject><subject>Marijuana</subject><subject>Mass spectrometry</subject><subject>Medicine</subject><subject>Mental disorders</subject><subject>Mice</subject><subject>Mutation</subject><subject>Neuregulin</subject><subject>Neuregulin 1</subject><subject>Neuregulin-1 - chemistry</subject><subject>Neuregulin-1 - genetics</subject><subject>Neuregulin-1 - metabolism</subject><subject>Neurosciences</subject><subject>Pharmacokinetics</subject><subject>Pharmacology</subject><subject>Plasma</subject><subject>Protein Structure, Tertiary</subject><subject>Psychopharmacology</subject><subject>Psychotropic drugs</subject><subject>Receptor density</subject><subject>Receptor, Serotonin, 5-HT2A - metabolism</subject><subject>Rodents</subject><subject>Schizophrenia</subject><subject>Scientific imaging</subject><subject>Sensory Gating - drug effects</subject><subject>Serotonin S2 receptors</subject><subject>Social aspects</subject><subject>Social behavior</subject><subject>Studies</subject><subject>Substantia nigra</subject><subject>Tetrahydrocannabinol</subject><subject>Time Factors</subject><subject>Tranquilizing drugs</subject><subject>Transmembrane domains</subject><subject>Withdrawal</subject><subject>γ-Aminobutyric acid A receptors</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2012</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkl1r2zAYhc3YWLtu_2BshkFhF8kky_q6GZR2H4FCYV-3QpZfJQq2lFpy2f79lMUtMWwwfCHx6jlH4vgUxUuMlphw_G4bxsHrbrkLHpYIkRpX8lFxiiWpFqxC5PHR_qR4FuMWIUoEY0-Lk6qiSFacnBb6ysXkvEmlh3EIDWz0ncvOuivBWjAplsGWRnuvG9e60JXOl2nQPvbQN3mFsg29zsO9HtZjl7e47MekfSp7Z-B58cTqLsKLaT0rvn_88O3y8-L65tPq8uJ6YRgVcmEZIFRjbgWmkjJOW9NUWnAOhjeEkoYa1AgByEKLhcACCWloa3XdMp0PyVnx-uC760JUUzpRVQhJxhASNBOrA9EGvVW7wfV6-KWCdurPIAxrpYfkTAeKSUPAmNoYRuoW48bUiFECLVgquWmy1_vptrHpoTXgcyjdzHR-4t1GrcOdIgRzWVXZ4M1kMITbEWL6x5Mnaq3zq5y3IZuZ3kWjLmrOcS2FEJla_oXKXwv5D-R-WJfnM8HbmSAzCX6mtR5jVKuvX_6fvfkxZ8-P2A3oLm1i6Mbkgo9zsD6AZggxDmAfksNI7et9n4ba11tN9c6yV8epP4ju-0x-AwqO9vk</recordid><startdate>20120403</startdate><enddate>20120403</enddate><creator>Long, Leonora E</creator><creator>Chesworth, Rose</creator><creator>Huang, Xu-Feng</creator><creator>Wong, Alexander</creator><creator>Spiro, Adena</creator><creator>McGregor, Iain S</creator><creator>Arnold, Jonathon C</creator><creator>Karl, Tim</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20120403</creationdate><title>Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice</title><author>Long, Leonora E ; Chesworth, Rose ; Huang, Xu-Feng ; Wong, Alexander ; Spiro, Adena ; McGregor, Iain S ; Arnold, Jonathon C ; Karl, Tim</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6589-f6e00417f81595675dcb2a877ec7b353b5c0b88e0fed18818089c5dfa4d6ab5c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2012</creationdate><topic>Animals</topic><topic>Antipsychotics</topic><topic>Anxiety</topic><topic>Anxiety - chemically induced</topic><topic>Autoradiography</topic><topic>Behavior, Animal - drug effects</topic><topic>Behavior, Animal - physiology</topic><topic>Binding</topic><topic>Biology</topic><topic>Blood</topic><topic>Brain research</topic><topic>Cannabidiol - blood</topic><topic>Cannabidiol - pharmacology</topic><topic>Cannabinoids</topic><topic>Cannabis</topic><topic>Cell Membrane - metabolism</topic><topic>Chromatography</topic><topic>Constituents</topic><topic>Drug dosages</topic><topic>Exploratory Behavior - drug effects</topic><topic>Female</topic><topic>Genotype & phenotype</topic><topic>Genotypes</topic><topic>Hyperactivity</topic><topic>Locomotion - drug effects</topic><topic>Male</topic><topic>Marijuana</topic><topic>Mass spectrometry</topic><topic>Medicine</topic><topic>Mental disorders</topic><topic>Mice</topic><topic>Mutation</topic><topic>Neuregulin</topic><topic>Neuregulin 1</topic><topic>Neuregulin-1 - chemistry</topic><topic>Neuregulin-1 - genetics</topic><topic>Neuregulin-1 - metabolism</topic><topic>Neurosciences</topic><topic>Pharmacokinetics</topic><topic>Pharmacology</topic><topic>Plasma</topic><topic>Protein Structure, Tertiary</topic><topic>Psychopharmacology</topic><topic>Psychotropic drugs</topic><topic>Receptor density</topic><topic>Receptor, Serotonin, 5-HT2A - metabolism</topic><topic>Rodents</topic><topic>Schizophrenia</topic><topic>Scientific imaging</topic><topic>Sensory Gating - drug effects</topic><topic>Serotonin S2 receptors</topic><topic>Social aspects</topic><topic>Social behavior</topic><topic>Studies</topic><topic>Substantia nigra</topic><topic>Tetrahydrocannabinol</topic><topic>Time Factors</topic><topic>Tranquilizing drugs</topic><topic>Transmembrane domains</topic><topic>Withdrawal</topic><topic>γ-Aminobutyric acid A receptors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Long, Leonora E</creatorcontrib><creatorcontrib>Chesworth, Rose</creatorcontrib><creatorcontrib>Huang, Xu-Feng</creatorcontrib><creatorcontrib>Wong, Alexander</creatorcontrib><creatorcontrib>Spiro, Adena</creatorcontrib><creatorcontrib>McGregor, Iain S</creatorcontrib><creatorcontrib>Arnold, Jonathon C</creatorcontrib><creatorcontrib>Karl, Tim</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database (Proquest)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials science collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Long, Leonora E</au><au>Chesworth, Rose</au><au>Huang, Xu-Feng</au><au>Wong, Alexander</au><au>Spiro, Adena</au><au>McGregor, Iain S</au><au>Arnold, Jonathon C</au><au>Karl, Tim</au><au>Hashimoto, Kenji</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2012-04-03</date><risdate>2012</risdate><volume>7</volume><issue>4</issue><spage>e34129</spage><pages>e34129-</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The cannabis constituent cannabidiol (CBD) possesses anxiolytic and antipsychotic properties. We have previously shown that transmembrane domain neuregulin 1 mutant (Nrg1 TM HET) mice display altered neurobehavioural responses to the main psychoactive constituent of cannabis, Δ(9)-tetrahydrocannabinol. Here we investigated whether Nrg1 TM HET mice respond differently to CBD and whether CBD reverses schizophrenia-related phenotypes expressed by these mice. Adult male Nrg1 TM HET and wild type-like littermates (WT) received vehicle or CBD (1, 50 or 100 mg/kg i.p.) for 21 days. During treatment and 48 h after withdrawal we measured behaviour, whole blood CBD concentrations and autoradiographic receptor binding. Nrg1 HET mice displayed locomotor hyperactivity, PPI deficits and reduced 5-HT(2A) receptor binding density in the substantia nigra, but these phenotypes were not reversed by CBD. However, long-term CBD (50 and 100 mg/kg) selectively enhanced social interaction in Nrg1 TM HET mice. Furthermore, acute CBD (100 mg/kg) selectively increased PPI in Nrg1 TM HET mice, although tolerance to this effect was manifest upon repeated CBD administration. Long-term CBD (50 mg/kg) also selectively increased GABA(A) receptor binding in the granular retrosplenial cortex in Nrg1 TM HET mice and reduced 5-HT(2A) binding in the substantia nigra in WT mice. Nrg1 appears necessary for CBD-induced anxiolysis since only WT mice developed decreased anxiety-related behaviour with repeated CBD treatment. Altered pharmacokinetics in mutant mice could not explain our findings since no genotype differences existed in CBD blood concentrations. Here we demonstrate that Nrg1 modulates acute and long-term neurobehavioural effects of CBD, which does not reverse the schizophrenia-relevant phenotypes.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>22509273</pmid><doi>10.1371/journal.pone.0034129</doi><tpages>e34129</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2012-04, Vol.7 (4), p.e34129 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2009660085 |
source | MEDLINE; Public Library of Science; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Animals Antipsychotics Anxiety Anxiety - chemically induced Autoradiography Behavior, Animal - drug effects Behavior, Animal - physiology Binding Biology Blood Brain research Cannabidiol - blood Cannabidiol - pharmacology Cannabinoids Cannabis Cell Membrane - metabolism Chromatography Constituents Drug dosages Exploratory Behavior - drug effects Female Genotype & phenotype Genotypes Hyperactivity Locomotion - drug effects Male Marijuana Mass spectrometry Medicine Mental disorders Mice Mutation Neuregulin Neuregulin 1 Neuregulin-1 - chemistry Neuregulin-1 - genetics Neuregulin-1 - metabolism Neurosciences Pharmacokinetics Pharmacology Plasma Protein Structure, Tertiary Psychopharmacology Psychotropic drugs Receptor density Receptor, Serotonin, 5-HT2A - metabolism Rodents Schizophrenia Scientific imaging Sensory Gating - drug effects Serotonin S2 receptors Social aspects Social behavior Studies Substantia nigra Tetrahydrocannabinol Time Factors Tranquilizing drugs Transmembrane domains Withdrawal γ-Aminobutyric acid A receptors |
title | Distinct neurobehavioural effects of cannabidiol in transmembrane domain neuregulin 1 mutant mice |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T18%3A46%3A34IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Distinct%20neurobehavioural%20effects%20of%20cannabidiol%20in%20transmembrane%20domain%20neuregulin%201%20mutant%20mice&rft.jtitle=PloS%20one&rft.au=Long,%20Leonora%20E&rft.date=2012-04-03&rft.volume=7&rft.issue=4&rft.spage=e34129&rft.pages=e34129-&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0034129&rft_dat=%3Cgale_plos_%3EA477149888%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009660085&rft_id=info:pmid/22509273&rft_galeid=A477149888&rft_doaj_id=oai_doaj_org_article_69c3ecc4cc634d11bc40653edef597cb&rfr_iscdi=true |