The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis
Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-r...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-02, Vol.13 (2), p.e0193658-e0193658 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0193658 |
---|---|
container_issue | 2 |
container_start_page | e0193658 |
container_title | PloS one |
container_volume | 13 |
creator | Forte, Pedro Marinho, Daniel A Morais, Jorge E Morouço, Pedro G Barbosa, Tiago M |
description | Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force. |
doi_str_mv | 10.1371/journal.pone.0193658 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2009230892</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A529306533</galeid><doaj_id>oai_doaj_org_article_95692b0515bb43348144fe4b5343a675</doaj_id><sourcerecordid>A529306533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c718t-222870c019f29c67b83c8473b376a76203cf5a698e9adcc83f23ee45ccef20fc3</originalsourceid><addsrcrecordid>eNqNU12L1DAULaK46-g_EA0Iog8d06QfqQ_CsPgxsLCgq68hTW-nmU2T2aTddf6FP9nMTHeZyj5IIQ0355ybc3NvFL1M8DyhRfJhbQdnhJ5vrIE5TkqaZ-xRdBo2JM4Jpo-P9ifRM-_XGGeU5fnT6ISUKStLnJ5Gfy5bQDfCKdErazyyBvUhIsDZemtEp2SINUigW-t0HTthrqBGty2Alq1QDvmNU6YHh9SBeQXbuLMdmH5P3IV87-wVILmVGj6iBTJDB05JoZFX3aD3mZEIXrZe-efRk0ZoDy_G_yz6-eXz5dm3-Pzi6_JscR7LImF9TAhhBZbBd0NKmRcVo5KlBa1okYti51k2mchLBqWopWS0IRQgzaSEhuBG0ln0-qC70dbzsZieE4xLQjELyyxaHhC1FWsebHbCbbkViu8D1q24cL0KpniZ5SWpcJZkVZVSmrIkTRtIq4ymVORFFrQ-jdmGqoNahvI4oSei0xOjWr6yNzxjNEkTGgTejQLOXg_ge94pL0FrYcAOh3uHS9CcBeibf6APuxtRKxEMKNPYkFfuRPkiIyXFeUZ3aecPoMJXQ2iN0HmNCvEJ4f2EEDA9_O5XYvCeL398_3_sxa8p9u0RtgWh-9ZbPey7dgpMD0DprPcOmvsiJ5jvBueuGnw3OHwcnEB7dfxA96S7SaF_AccuFCc</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2009230892</pqid></control><display><type>article</type><title>The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Forte, Pedro ; Marinho, Daniel A ; Morais, Jorge E ; Morouço, Pedro G ; Barbosa, Tiago M</creator><contributor>Jan, Yih-Kuen</contributor><creatorcontrib>Forte, Pedro ; Marinho, Daniel A ; Morais, Jorge E ; Morouço, Pedro G ; Barbosa, Tiago M ; Jan, Yih-Kuen</creatorcontrib><description>Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0193658</identifier><identifier>PMID: 29489904</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Aerodynamic drag ; Aerodynamics ; Air ; Analysis ; Bicycling ; Biology and Life Sciences ; Biomechanical Phenomena ; Biomechanics ; Computational fluid dynamics ; Computer applications ; Computer simulation ; Drag ; Engineering ; Fluid dynamics ; Hand ; Hands ; Humans ; Hydrodynamics ; Kinematics ; Mathematical models ; Mechanical Phenomena ; Medicine and Health Sciences ; Models, Biological ; Numerical simulations ; Paralympic Games ; Physical Sciences ; Pressure ; Pressure drag ; Protective equipment ; Racing ; Recovery ; Simulation analysis ; Sports ; Swimming ; Viscous drag ; Wheelchair racing ; Wheelchairs</subject><ispartof>PloS one, 2018-02, Vol.13 (2), p.e0193658-e0193658</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Forte et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Forte et al 2018 Forte et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c718t-222870c019f29c67b83c8473b376a76203cf5a698e9adcc83f23ee45ccef20fc3</citedby><cites>FETCH-LOGICAL-c718t-222870c019f29c67b83c8473b376a76203cf5a698e9adcc83f23ee45ccef20fc3</cites><orcidid>0000-0003-0184-6780</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831413/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5831413/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29489904$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Jan, Yih-Kuen</contributor><creatorcontrib>Forte, Pedro</creatorcontrib><creatorcontrib>Marinho, Daniel A</creatorcontrib><creatorcontrib>Morais, Jorge E</creatorcontrib><creatorcontrib>Morouço, Pedro G</creatorcontrib><creatorcontrib>Barbosa, Tiago M</creatorcontrib><title>The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force.</description><subject>Aerodynamic drag</subject><subject>Aerodynamics</subject><subject>Air</subject><subject>Analysis</subject><subject>Bicycling</subject><subject>Biology and Life Sciences</subject><subject>Biomechanical Phenomena</subject><subject>Biomechanics</subject><subject>Computational fluid dynamics</subject><subject>Computer applications</subject><subject>Computer simulation</subject><subject>Drag</subject><subject>Engineering</subject><subject>Fluid dynamics</subject><subject>Hand</subject><subject>Hands</subject><subject>Humans</subject><subject>Hydrodynamics</subject><subject>Kinematics</subject><subject>Mathematical models</subject><subject>Mechanical Phenomena</subject><subject>Medicine and Health Sciences</subject><subject>Models, Biological</subject><subject>Numerical simulations</subject><subject>Paralympic Games</subject><subject>Physical Sciences</subject><subject>Pressure</subject><subject>Pressure drag</subject><subject>Protective equipment</subject><subject>Racing</subject><subject>Recovery</subject><subject>Simulation analysis</subject><subject>Sports</subject><subject>Swimming</subject><subject>Viscous drag</subject><subject>Wheelchair racing</subject><subject>Wheelchairs</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNU12L1DAULaK46-g_EA0Iog8d06QfqQ_CsPgxsLCgq68hTW-nmU2T2aTddf6FP9nMTHeZyj5IIQ0355ybc3NvFL1M8DyhRfJhbQdnhJ5vrIE5TkqaZ-xRdBo2JM4Jpo-P9ifRM-_XGGeU5fnT6ISUKStLnJ5Gfy5bQDfCKdErazyyBvUhIsDZemtEp2SINUigW-t0HTthrqBGty2Alq1QDvmNU6YHh9SBeQXbuLMdmH5P3IV87-wVILmVGj6iBTJDB05JoZFX3aD3mZEIXrZe-efRk0ZoDy_G_yz6-eXz5dm3-Pzi6_JscR7LImF9TAhhBZbBd0NKmRcVo5KlBa1okYti51k2mchLBqWopWS0IRQgzaSEhuBG0ln0-qC70dbzsZieE4xLQjELyyxaHhC1FWsebHbCbbkViu8D1q24cL0KpniZ5SWpcJZkVZVSmrIkTRtIq4ymVORFFrQ-jdmGqoNahvI4oSei0xOjWr6yNzxjNEkTGgTejQLOXg_ge94pL0FrYcAOh3uHS9CcBeibf6APuxtRKxEMKNPYkFfuRPkiIyXFeUZ3aecPoMJXQ2iN0HmNCvEJ4f2EEDA9_O5XYvCeL398_3_sxa8p9u0RtgWh-9ZbPey7dgpMD0DprPcOmvsiJ5jvBueuGnw3OHwcnEB7dfxA96S7SaF_AccuFCc</recordid><startdate>20180228</startdate><enddate>20180228</enddate><creator>Forte, Pedro</creator><creator>Marinho, Daniel A</creator><creator>Morais, Jorge E</creator><creator>Morouço, Pedro G</creator><creator>Barbosa, Tiago M</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0184-6780</orcidid></search><sort><creationdate>20180228</creationdate><title>The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis</title><author>Forte, Pedro ; Marinho, Daniel A ; Morais, Jorge E ; Morouço, Pedro G ; Barbosa, Tiago M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c718t-222870c019f29c67b83c8473b376a76203cf5a698e9adcc83f23ee45ccef20fc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aerodynamic drag</topic><topic>Aerodynamics</topic><topic>Air</topic><topic>Analysis</topic><topic>Bicycling</topic><topic>Biology and Life Sciences</topic><topic>Biomechanical Phenomena</topic><topic>Biomechanics</topic><topic>Computational fluid dynamics</topic><topic>Computer applications</topic><topic>Computer simulation</topic><topic>Drag</topic><topic>Engineering</topic><topic>Fluid dynamics</topic><topic>Hand</topic><topic>Hands</topic><topic>Humans</topic><topic>Hydrodynamics</topic><topic>Kinematics</topic><topic>Mathematical models</topic><topic>Mechanical Phenomena</topic><topic>Medicine and Health Sciences</topic><topic>Models, Biological</topic><topic>Numerical simulations</topic><topic>Paralympic Games</topic><topic>Physical Sciences</topic><topic>Pressure</topic><topic>Pressure drag</topic><topic>Protective equipment</topic><topic>Racing</topic><topic>Recovery</topic><topic>Simulation analysis</topic><topic>Sports</topic><topic>Swimming</topic><topic>Viscous drag</topic><topic>Wheelchair racing</topic><topic>Wheelchairs</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Forte, Pedro</creatorcontrib><creatorcontrib>Marinho, Daniel A</creatorcontrib><creatorcontrib>Morais, Jorge E</creatorcontrib><creatorcontrib>Morouço, Pedro G</creatorcontrib><creatorcontrib>Barbosa, Tiago M</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Forte, Pedro</au><au>Marinho, Daniel A</au><au>Morais, Jorge E</au><au>Morouço, Pedro G</au><au>Barbosa, Tiago M</au><au>Jan, Yih-Kuen</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-02-28</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>e0193658</spage><epage>e0193658</epage><pages>e0193658-e0193658</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>Biomechanics plays an important role helping Paralympic sprinters to excel, having the aerodynamic drag a significant impact on the athlete's performance. The aim of this study was to assess the aerodynamics in different key-moments of the stroke cycle by Computational Fluid Dynamics. A world-ranked wheelchair sprinter was scanned on the racing wheelchair wearing his competition gear and helmet. The sprinter was scanned in three different positions: (i) catch (hands in the 12h position on the hand-rim); (ii) the release (hands in the 18h position on the hand-rim) and; (iii) recovery phase (hands do not touch the hand-rim and are hyperextended backwards). The simulations were performed at 2.0, 3.5, 5.0 and 6.5 m/s. The mean viscous and pressure drag components, total drag force and effective area were retrieved after running the numerical simulations. The viscous drag ranged from 3.35 N to 2.94 N, pressure drag from 0.38 N to 5.51 N, total drag force from 0.72 N to 8.45 N and effective area from 0.24 to 0.41 m2. The results pointed out that the sprinter was submitted to less drag in the recovery phase, and higher drag in the catch. These findings suggest the importance of keeping an adequate body alignment to avoid an increase in the drag force.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29489904</pmid><doi>10.1371/journal.pone.0193658</doi><tpages>e0193658</tpages><orcidid>https://orcid.org/0000-0003-0184-6780</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-02, Vol.13 (2), p.e0193658-e0193658 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2009230892 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Aerodynamic drag Aerodynamics Air Analysis Bicycling Biology and Life Sciences Biomechanical Phenomena Biomechanics Computational fluid dynamics Computer applications Computer simulation Drag Engineering Fluid dynamics Hand Hands Humans Hydrodynamics Kinematics Mathematical models Mechanical Phenomena Medicine and Health Sciences Models, Biological Numerical simulations Paralympic Games Physical Sciences Pressure Pressure drag Protective equipment Racing Recovery Simulation analysis Sports Swimming Viscous drag Wheelchair racing Wheelchairs |
title | The variations on the aerodynamics of a world-ranked wheelchair sprinter in the key-moments of the stroke cycle: A numerical simulation analysis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T20%3A56%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20variations%20on%20the%20aerodynamics%20of%20a%20world-ranked%20wheelchair%20sprinter%20in%20the%20key-moments%20of%20the%20stroke%20cycle:%20A%20numerical%20simulation%20analysis&rft.jtitle=PloS%20one&rft.au=Forte,%20Pedro&rft.date=2018-02-28&rft.volume=13&rft.issue=2&rft.spage=e0193658&rft.epage=e0193658&rft.pages=e0193658-e0193658&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0193658&rft_dat=%3Cgale_plos_%3EA529306533%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2009230892&rft_id=info:pmid/29489904&rft_galeid=A529306533&rft_doaj_id=oai_doaj_org_article_95692b0515bb43348144fe4b5343a675&rfr_iscdi=true |