Flow patterns through vascular graft models with and without cuffs
The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs-with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-02, Vol.13 (2), p.e0193304-e0193304 |
---|---|
Hauptverfasser: | , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0193304 |
---|---|
container_issue | 2 |
container_start_page | e0193304 |
container_title | PloS one |
container_volume | 13 |
creator | Leong, Chia Min Nackman, Gary B Wei, Timothy |
description | The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs-with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts. Two pulsatile flow waveforms corresponding to cardiac cycles during the rest and the excitation states, with 10% and without retrograde flow out the proximal end of the native artery were examined. In the absence of retrograde flow, the straight end-to-side graft showed recirculation and stagnation regions that lasted throughout the full cardiac cycle with the stagnation region more pronounced in the excitation state. The contoured end-to-side graft had stagnation region that lasted only for a portion of the cardiac cycle and was less pronounced. With 10% retrograde flow, extended stagnation regions under both rest and excitation states for both bypass grafts were eliminated. Our results show that bypass graft designers need to consider both the type of flow waveform and presence of retrograde flow when sculpting an optimal bypass graft geometry. |
doi_str_mv | 10.1371/journal.pone.0193304 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2007690626</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A528663614</galeid><doaj_id>oai_doaj_org_article_a3decc4d35284a6fa12ce98d16815cec</doaj_id><sourcerecordid>A528663614</sourcerecordid><originalsourceid>FETCH-LOGICAL-c692t-99e1a8c9a65690ccce2ec850f63b82706ee8c01605cfd1c80f11e3e3200816c33</originalsourceid><addsrcrecordid>eNqNkttu1DAQhiMEogd4AwSRkBBc7OJD4nVukEpFYaVKlTjdWu5knGTljbe205a3x9tNqw3qBfKFR55vfs_Yf5a9omRO-YJ-XLnB99rON67HOaEV56R4kh2mgM0EI_zpXnyQHYWwIqTkUojn2QGrikVR0PIw-3xm3U2-0TGi70MeW--Gps2vdYDBap83XpuYr12NNuQ3XWxz3dd3gRtiDoMx4UX2zGgb8OW4H2e_zr78PP02O7_4ujw9OZ-BqFicVRVSLaHSohQVAQBkCLIkRvBLyRZEIEogVJASTE1BEkMpcuSMEEkFcH6cvdnpbqwLahw_qJRfJEHBRCKWO6J2eqU2vltr_0c53am7A-cbpX3swKLSvEaAouYlk4UWRlMGWMmaCklLQEhan8bbhss11oB99NpORKeZvmtV465VKVlJybaZ96OAd1cDhqjWXQC0Vvfohl3flVwUpEjo23_Qx6cbqUanAbreuHQvbEXVSZpCCC7oVmv-CJVWjesOkldMl84nBR8mBYmJeBsbPYSglj--_z978XvKvttjW9Q2tsHZIXauD1Ow2IHgXQgezcMjU6K2Vr9_DbW1uhqtnspe73_QQ9G9t_lfDsL4bQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2007690626</pqid></control><display><type>article</type><title>Flow patterns through vascular graft models with and without cuffs</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Leong, Chia Min ; Nackman, Gary B ; Wei, Timothy</creator><contributor>Gurka, Roi</contributor><creatorcontrib>Leong, Chia Min ; Nackman, Gary B ; Wei, Timothy ; Gurka, Roi</creatorcontrib><description>The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs-with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts. Two pulsatile flow waveforms corresponding to cardiac cycles during the rest and the excitation states, with 10% and without retrograde flow out the proximal end of the native artery were examined. In the absence of retrograde flow, the straight end-to-side graft showed recirculation and stagnation regions that lasted throughout the full cardiac cycle with the stagnation region more pronounced in the excitation state. The contoured end-to-side graft had stagnation region that lasted only for a portion of the cardiac cycle and was less pronounced. With 10% retrograde flow, extended stagnation regions under both rest and excitation states for both bypass grafts were eliminated. Our results show that bypass graft designers need to consider both the type of flow waveform and presence of retrograde flow when sculpting an optimal bypass graft geometry.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0193304</identifier><identifier>PMID: 29474415</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Anastomosis ; Animals ; Atherosclerosis ; Biology and Life Sciences ; Biomechanics ; Blood Flow Velocity ; Blood Vessel Prosthesis ; Bypasses ; Coronary artery bypass ; Cuffs ; Design ; Digital imaging ; Digital particle image velocimetry ; Excitation ; Flow distribution ; Fluid dynamics ; Grafting ; Grafts ; Heart ; Heart diseases ; Heart rate ; Heart transplantation ; Humans ; Measurement ; Measurement techniques ; Medicine and Health Sciences ; Models, Cardiovascular ; Patient outcomes ; Physical Sciences ; Physiological aspects ; Prosthesis Design ; Reynolds number ; Shear stress ; Smooth muscle ; Stagnation ; Stagnation point ; Veins & arteries ; Velocity measurement ; Waveforms</subject><ispartof>PloS one, 2018-02, Vol.13 (2), p.e0193304-e0193304</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Leong et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Leong et al 2018 Leong et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c692t-99e1a8c9a65690ccce2ec850f63b82706ee8c01605cfd1c80f11e3e3200816c33</citedby><cites>FETCH-LOGICAL-c692t-99e1a8c9a65690ccce2ec850f63b82706ee8c01605cfd1c80f11e3e3200816c33</cites><orcidid>0000-0002-2128-778X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825106/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5825106/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29474415$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Gurka, Roi</contributor><creatorcontrib>Leong, Chia Min</creatorcontrib><creatorcontrib>Nackman, Gary B</creatorcontrib><creatorcontrib>Wei, Timothy</creatorcontrib><title>Flow patterns through vascular graft models with and without cuffs</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs-with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts. Two pulsatile flow waveforms corresponding to cardiac cycles during the rest and the excitation states, with 10% and without retrograde flow out the proximal end of the native artery were examined. In the absence of retrograde flow, the straight end-to-side graft showed recirculation and stagnation regions that lasted throughout the full cardiac cycle with the stagnation region more pronounced in the excitation state. The contoured end-to-side graft had stagnation region that lasted only for a portion of the cardiac cycle and was less pronounced. With 10% retrograde flow, extended stagnation regions under both rest and excitation states for both bypass grafts were eliminated. Our results show that bypass graft designers need to consider both the type of flow waveform and presence of retrograde flow when sculpting an optimal bypass graft geometry.</description><subject>Anastomosis</subject><subject>Animals</subject><subject>Atherosclerosis</subject><subject>Biology and Life Sciences</subject><subject>Biomechanics</subject><subject>Blood Flow Velocity</subject><subject>Blood Vessel Prosthesis</subject><subject>Bypasses</subject><subject>Coronary artery bypass</subject><subject>Cuffs</subject><subject>Design</subject><subject>Digital imaging</subject><subject>Digital particle image velocimetry</subject><subject>Excitation</subject><subject>Flow distribution</subject><subject>Fluid dynamics</subject><subject>Grafting</subject><subject>Grafts</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart rate</subject><subject>Heart transplantation</subject><subject>Humans</subject><subject>Measurement</subject><subject>Measurement techniques</subject><subject>Medicine and Health Sciences</subject><subject>Models, Cardiovascular</subject><subject>Patient outcomes</subject><subject>Physical Sciences</subject><subject>Physiological aspects</subject><subject>Prosthesis Design</subject><subject>Reynolds number</subject><subject>Shear stress</subject><subject>Smooth muscle</subject><subject>Stagnation</subject><subject>Stagnation point</subject><subject>Veins & arteries</subject><subject>Velocity measurement</subject><subject>Waveforms</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNqNkttu1DAQhiMEogd4AwSRkBBc7OJD4nVukEpFYaVKlTjdWu5knGTljbe205a3x9tNqw3qBfKFR55vfs_Yf5a9omRO-YJ-XLnB99rON67HOaEV56R4kh2mgM0EI_zpXnyQHYWwIqTkUojn2QGrikVR0PIw-3xm3U2-0TGi70MeW--Gps2vdYDBap83XpuYr12NNuQ3XWxz3dd3gRtiDoMx4UX2zGgb8OW4H2e_zr78PP02O7_4ujw9OZ-BqFicVRVSLaHSohQVAQBkCLIkRvBLyRZEIEogVJASTE1BEkMpcuSMEEkFcH6cvdnpbqwLahw_qJRfJEHBRCKWO6J2eqU2vltr_0c53am7A-cbpX3swKLSvEaAouYlk4UWRlMGWMmaCklLQEhan8bbhss11oB99NpORKeZvmtV465VKVlJybaZ96OAd1cDhqjWXQC0Vvfohl3flVwUpEjo23_Qx6cbqUanAbreuHQvbEXVSZpCCC7oVmv-CJVWjesOkldMl84nBR8mBYmJeBsbPYSglj--_z978XvKvttjW9Q2tsHZIXauD1Ow2IHgXQgezcMjU6K2Vr9_DbW1uhqtnspe73_QQ9G9t_lfDsL4bQ</recordid><startdate>20180223</startdate><enddate>20180223</enddate><creator>Leong, Chia Min</creator><creator>Nackman, Gary B</creator><creator>Wei, Timothy</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2128-778X</orcidid></search><sort><creationdate>20180223</creationdate><title>Flow patterns through vascular graft models with and without cuffs</title><author>Leong, Chia Min ; Nackman, Gary B ; Wei, Timothy</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c692t-99e1a8c9a65690ccce2ec850f63b82706ee8c01605cfd1c80f11e3e3200816c33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Anastomosis</topic><topic>Animals</topic><topic>Atherosclerosis</topic><topic>Biology and Life Sciences</topic><topic>Biomechanics</topic><topic>Blood Flow Velocity</topic><topic>Blood Vessel Prosthesis</topic><topic>Bypasses</topic><topic>Coronary artery bypass</topic><topic>Cuffs</topic><topic>Design</topic><topic>Digital imaging</topic><topic>Digital particle image velocimetry</topic><topic>Excitation</topic><topic>Flow distribution</topic><topic>Fluid dynamics</topic><topic>Grafting</topic><topic>Grafts</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart rate</topic><topic>Heart transplantation</topic><topic>Humans</topic><topic>Measurement</topic><topic>Measurement techniques</topic><topic>Medicine and Health Sciences</topic><topic>Models, Cardiovascular</topic><topic>Patient outcomes</topic><topic>Physical Sciences</topic><topic>Physiological aspects</topic><topic>Prosthesis Design</topic><topic>Reynolds number</topic><topic>Shear stress</topic><topic>Smooth muscle</topic><topic>Stagnation</topic><topic>Stagnation point</topic><topic>Veins & arteries</topic><topic>Velocity measurement</topic><topic>Waveforms</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Leong, Chia Min</creatorcontrib><creatorcontrib>Nackman, Gary B</creatorcontrib><creatorcontrib>Wei, Timothy</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Leong, Chia Min</au><au>Nackman, Gary B</au><au>Wei, Timothy</au><au>Gurka, Roi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Flow patterns through vascular graft models with and without cuffs</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-02-23</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>e0193304</spage><epage>e0193304</epage><pages>e0193304-e0193304</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>The shape of a bypass graft plays an important role on its efficacy. Here, we investigated flow through two vascular graft designs-with and without cuff at the anastomosis. We conducted Digital Particle Image Velocimetry (DPIV) measurements to obtain the flow field information through these vascular grafts. Two pulsatile flow waveforms corresponding to cardiac cycles during the rest and the excitation states, with 10% and without retrograde flow out the proximal end of the native artery were examined. In the absence of retrograde flow, the straight end-to-side graft showed recirculation and stagnation regions that lasted throughout the full cardiac cycle with the stagnation region more pronounced in the excitation state. The contoured end-to-side graft had stagnation region that lasted only for a portion of the cardiac cycle and was less pronounced. With 10% retrograde flow, extended stagnation regions under both rest and excitation states for both bypass grafts were eliminated. Our results show that bypass graft designers need to consider both the type of flow waveform and presence of retrograde flow when sculpting an optimal bypass graft geometry.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29474415</pmid><doi>10.1371/journal.pone.0193304</doi><tpages>e0193304</tpages><orcidid>https://orcid.org/0000-0002-2128-778X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-02, Vol.13 (2), p.e0193304-e0193304 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2007690626 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Anastomosis Animals Atherosclerosis Biology and Life Sciences Biomechanics Blood Flow Velocity Blood Vessel Prosthesis Bypasses Coronary artery bypass Cuffs Design Digital imaging Digital particle image velocimetry Excitation Flow distribution Fluid dynamics Grafting Grafts Heart Heart diseases Heart rate Heart transplantation Humans Measurement Measurement techniques Medicine and Health Sciences Models, Cardiovascular Patient outcomes Physical Sciences Physiological aspects Prosthesis Design Reynolds number Shear stress Smooth muscle Stagnation Stagnation point Veins & arteries Velocity measurement Waveforms |
title | Flow patterns through vascular graft models with and without cuffs |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T08%3A30%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Flow%20patterns%20through%20vascular%20graft%20models%20with%20and%20without%20cuffs&rft.jtitle=PloS%20one&rft.au=Leong,%20Chia%20Min&rft.date=2018-02-23&rft.volume=13&rft.issue=2&rft.spage=e0193304&rft.epage=e0193304&rft.pages=e0193304-e0193304&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0193304&rft_dat=%3Cgale_plos_%3EA528663614%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2007690626&rft_id=info:pmid/29474415&rft_galeid=A528663614&rft_doaj_id=oai_doaj_org_article_a3decc4d35284a6fa12ce98d16815cec&rfr_iscdi=true |