A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics
In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that i...
Gespeichert in:
Veröffentlicht in: | PLoS computational biology 2018-01, Vol.14 (1), p.e1005906-e1005906 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1005906 |
---|---|
container_issue | 1 |
container_start_page | e1005906 |
container_title | PLoS computational biology |
container_volume | 14 |
creator | Sato, Daisuke Dixon, Rose E Santana, Luis F Navedo, Manuel F |
description | In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak to strong in successive beats despite a constant heart rate. These cardiac alternans can be caused by the instability of membrane potential (Vm) due to steep AP duration (APD) restitution (Vm-driven alternans), instability of Cai cycling (Ca2+-driven alternans), or both, and may be modulated by functional coupling between clustered CaV1.2 (e.g. cooperative gating). Here, mathematical analysis and computational models were used to determine how changes in the strength of cooperative gating between LTCCs may impact membrane voltage and intracellular Ca2+ dynamics in the heart. We found that increasing the degree of coupling between LTCCs increases the amplitude of Ca2+ currents (ICaL) and prolongs AP duration (APD). Increased AP duration is known to promote cardiac alternans, a potentially arrhythmogenic substrate. In addition, our analysis shows that increasing the strength of cooperative activation of LTCCs makes the coupling of Ca2+ on the membrane voltage (Cai→Vm coupling) more positive and destabilizes the Vm-Cai dynamics for Vm-driven alternans and Cai-driven alternans, but not for quasiperiodic oscillation. These results suggest that cooperative gating of LTCCs may have a major impact on cardiac excitation-contraction coupling, not only by prolonging APD, but also by altering Cai→Vm coupling and potentially promoting cardiac arrhythmias. |
doi_str_mv | 10.1371/journal.pcbi.1005906 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2002622732</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_345a2f24d5734d079a047225020f28f6</doaj_id><sourcerecordid>2002622732</sourcerecordid><originalsourceid>FETCH-LOGICAL-c456t-fdae7f2cbe25a58c5d66f9f90c9b2dc8b3c71a674dd0a3445b84e9a7505fc64b3</originalsourceid><addsrcrecordid>eNptUl1rFDEUHUSxtfoPRAO-CLJrJp-Tl0JZ_Cgs-KLP4U4-tllmkjGZLey_N3WnpRXzci7JOefeG07TvG3xuqWy_bxPhxxhWE-mD-sWY66weNact5zTlaS8e_6oPmtelbLHuJZKvGzOiKK0w1icN_YKjcm6AfmUkUlpchnmcOvQrkLcoeTRdjUfJ4c2QD4hcwMxuqEgiBaFuSDnvTMVU0QGsg1gEAyzq5PFguwxwhhMed288DAU92bBi-bX1y8_N99X2x_frjdX25VhXMwrb8FJT0zvCAfeGW6F8MorbFRPrOl6amQLQjJrMVDGeN8xp0ByzL0RrKcXzfuT7zSkopcPKppgTAQhkpLKuD4xbIK9nnIYIR91gqD_XqS805DnYAanKeNAPGGWS8oslgowk4RwTLAnnRfV63LpduhHZ42Lc4bhienTlxhu9C7dai47QRmuBh8Xg5x-H1yZ9RiKccMA0aVD0a3qFJf1qEr98A_1_9uxE8vkVEp2_mGYFuu70Nyr9F1o9BKaKnv3eJEH0X1K6B9tEL-C</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002622732</pqid></control><display><type>article</type><title>A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><creator>Sato, Daisuke ; Dixon, Rose E ; Santana, Luis F ; Navedo, Manuel F</creator><contributor>Panfilov, Alexander V</contributor><creatorcontrib>Sato, Daisuke ; Dixon, Rose E ; Santana, Luis F ; Navedo, Manuel F ; Panfilov, Alexander V</creatorcontrib><description>In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak to strong in successive beats despite a constant heart rate. These cardiac alternans can be caused by the instability of membrane potential (Vm) due to steep AP duration (APD) restitution (Vm-driven alternans), instability of Cai cycling (Ca2+-driven alternans), or both, and may be modulated by functional coupling between clustered CaV1.2 (e.g. cooperative gating). Here, mathematical analysis and computational models were used to determine how changes in the strength of cooperative gating between LTCCs may impact membrane voltage and intracellular Ca2+ dynamics in the heart. We found that increasing the degree of coupling between LTCCs increases the amplitude of Ca2+ currents (ICaL) and prolongs AP duration (APD). Increased AP duration is known to promote cardiac alternans, a potentially arrhythmogenic substrate. In addition, our analysis shows that increasing the strength of cooperative activation of LTCCs makes the coupling of Ca2+ on the membrane voltage (Cai→Vm coupling) more positive and destabilizes the Vm-Cai dynamics for Vm-driven alternans and Cai-driven alternans, but not for quasiperiodic oscillation. These results suggest that cooperative gating of LTCCs may have a major impact on cardiac excitation-contraction coupling, not only by prolonging APD, but also by altering Cai→Vm coupling and potentially promoting cardiac arrhythmias.</description><identifier>ISSN: 1553-7358</identifier><identifier>ISSN: 1553-734X</identifier><identifier>EISSN: 1553-7358</identifier><identifier>DOI: 10.1371/journal.pcbi.1005906</identifier><identifier>PMID: 29338006</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Action potential ; Action Potentials ; Animals ; Arrhythmias, Cardiac - physiopathology ; Biology and Life Sciences ; Calcium ; Calcium (intracellular) ; Calcium (reticular) ; Calcium - chemistry ; Calcium channels ; Calcium channels (L-type) ; Calcium channels (voltage-gated) ; Calcium Channels, L-Type - metabolism ; Calcium ions ; Calcium Signaling ; Calcium signalling ; Cardiac muscle ; Channel gating ; Channels ; Computational Biology ; Computer applications ; Computer Simulation ; Coupling ; Depolarization ; Electric potential ; Excitation Contraction Coupling ; Funding ; Heart ; Heart diseases ; Heart Rate ; Intracellular ; Markov Chains ; Mathematical analysis ; Mathematical models ; Medicine and Health Sciences ; Membrane potential ; Models, Biological ; Myocardial Contraction ; Myocardium - cytology ; Myocytes ; Myocytes, Cardiac - cytology ; Normal Distribution ; Pharmacology ; Physical Sciences ; Physiology ; Programming Languages ; Rabbits ; Rodents ; Sarcoplasmic reticulum ; Sarcoplasmic Reticulum - metabolism ; Stability ; Stochastic Processes ; Studies ; Substrates ; Supervision ; Ventricle</subject><ispartof>PLoS computational biology, 2018-01, Vol.14 (1), p.e1005906-e1005906</ispartof><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: channels and its effects on cardiac alternans dynamics. PLoS Comput Biol 14(1): e1005906. https://doi.org/10.1371/journal.pcbi.1005906</rights><rights>2018 Sato et al 2018 Sato et al</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: channels and its effects on cardiac alternans dynamics. PLoS Comput Biol 14(1): e1005906. https://doi.org/10.1371/journal.pcbi.1005906</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c456t-fdae7f2cbe25a58c5d66f9f90c9b2dc8b3c71a674dd0a3445b84e9a7505fc64b3</citedby><cites>FETCH-LOGICAL-c456t-fdae7f2cbe25a58c5d66f9f90c9b2dc8b3c71a674dd0a3445b84e9a7505fc64b3</cites><orcidid>0000-0001-6864-6594 ; 0000-0002-4297-8029 ; 0000-0001-9341-0970</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786340/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5786340/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,2100,2926,23865,27923,27924,53790,53792,79371,79372</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29338006$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Panfilov, Alexander V</contributor><creatorcontrib>Sato, Daisuke</creatorcontrib><creatorcontrib>Dixon, Rose E</creatorcontrib><creatorcontrib>Santana, Luis F</creatorcontrib><creatorcontrib>Navedo, Manuel F</creatorcontrib><title>A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics</title><title>PLoS computational biology</title><addtitle>PLoS Comput Biol</addtitle><description>In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak to strong in successive beats despite a constant heart rate. These cardiac alternans can be caused by the instability of membrane potential (Vm) due to steep AP duration (APD) restitution (Vm-driven alternans), instability of Cai cycling (Ca2+-driven alternans), or both, and may be modulated by functional coupling between clustered CaV1.2 (e.g. cooperative gating). Here, mathematical analysis and computational models were used to determine how changes in the strength of cooperative gating between LTCCs may impact membrane voltage and intracellular Ca2+ dynamics in the heart. We found that increasing the degree of coupling between LTCCs increases the amplitude of Ca2+ currents (ICaL) and prolongs AP duration (APD). Increased AP duration is known to promote cardiac alternans, a potentially arrhythmogenic substrate. In addition, our analysis shows that increasing the strength of cooperative activation of LTCCs makes the coupling of Ca2+ on the membrane voltage (Cai→Vm coupling) more positive and destabilizes the Vm-Cai dynamics for Vm-driven alternans and Cai-driven alternans, but not for quasiperiodic oscillation. These results suggest that cooperative gating of LTCCs may have a major impact on cardiac excitation-contraction coupling, not only by prolonging APD, but also by altering Cai→Vm coupling and potentially promoting cardiac arrhythmias.</description><subject>Action potential</subject><subject>Action Potentials</subject><subject>Animals</subject><subject>Arrhythmias, Cardiac - physiopathology</subject><subject>Biology and Life Sciences</subject><subject>Calcium</subject><subject>Calcium (intracellular)</subject><subject>Calcium (reticular)</subject><subject>Calcium - chemistry</subject><subject>Calcium channels</subject><subject>Calcium channels (L-type)</subject><subject>Calcium channels (voltage-gated)</subject><subject>Calcium Channels, L-Type - metabolism</subject><subject>Calcium ions</subject><subject>Calcium Signaling</subject><subject>Calcium signalling</subject><subject>Cardiac muscle</subject><subject>Channel gating</subject><subject>Channels</subject><subject>Computational Biology</subject><subject>Computer applications</subject><subject>Computer Simulation</subject><subject>Coupling</subject><subject>Depolarization</subject><subject>Electric potential</subject><subject>Excitation Contraction Coupling</subject><subject>Funding</subject><subject>Heart</subject><subject>Heart diseases</subject><subject>Heart Rate</subject><subject>Intracellular</subject><subject>Markov Chains</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Medicine and Health Sciences</subject><subject>Membrane potential</subject><subject>Models, Biological</subject><subject>Myocardial Contraction</subject><subject>Myocardium - cytology</subject><subject>Myocytes</subject><subject>Myocytes, Cardiac - cytology</subject><subject>Normal Distribution</subject><subject>Pharmacology</subject><subject>Physical Sciences</subject><subject>Physiology</subject><subject>Programming Languages</subject><subject>Rabbits</subject><subject>Rodents</subject><subject>Sarcoplasmic reticulum</subject><subject>Sarcoplasmic Reticulum - metabolism</subject><subject>Stability</subject><subject>Stochastic Processes</subject><subject>Studies</subject><subject>Substrates</subject><subject>Supervision</subject><subject>Ventricle</subject><issn>1553-7358</issn><issn>1553-734X</issn><issn>1553-7358</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUl1rFDEUHUSxtfoPRAO-CLJrJp-Tl0JZ_Cgs-KLP4U4-tllmkjGZLey_N3WnpRXzci7JOefeG07TvG3xuqWy_bxPhxxhWE-mD-sWY66weNact5zTlaS8e_6oPmtelbLHuJZKvGzOiKK0w1icN_YKjcm6AfmUkUlpchnmcOvQrkLcoeTRdjUfJ4c2QD4hcwMxuqEgiBaFuSDnvTMVU0QGsg1gEAyzq5PFguwxwhhMed288DAU92bBi-bX1y8_N99X2x_frjdX25VhXMwrb8FJT0zvCAfeGW6F8MorbFRPrOl6amQLQjJrMVDGeN8xp0ByzL0RrKcXzfuT7zSkopcPKppgTAQhkpLKuD4xbIK9nnIYIR91gqD_XqS805DnYAanKeNAPGGWS8oslgowk4RwTLAnnRfV63LpduhHZ42Lc4bhienTlxhu9C7dai47QRmuBh8Xg5x-H1yZ9RiKccMA0aVD0a3qFJf1qEr98A_1_9uxE8vkVEp2_mGYFuu70Nyr9F1o9BKaKnv3eJEH0X1K6B9tEL-C</recordid><startdate>20180101</startdate><enddate>20180101</enddate><creator>Sato, Daisuke</creator><creator>Dixon, Rose E</creator><creator>Santana, Luis F</creator><creator>Navedo, Manuel F</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-6864-6594</orcidid><orcidid>https://orcid.org/0000-0002-4297-8029</orcidid><orcidid>https://orcid.org/0000-0001-9341-0970</orcidid></search><sort><creationdate>20180101</creationdate><title>A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics</title><author>Sato, Daisuke ; Dixon, Rose E ; Santana, Luis F ; Navedo, Manuel F</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c456t-fdae7f2cbe25a58c5d66f9f90c9b2dc8b3c71a674dd0a3445b84e9a7505fc64b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Action potential</topic><topic>Action Potentials</topic><topic>Animals</topic><topic>Arrhythmias, Cardiac - physiopathology</topic><topic>Biology and Life Sciences</topic><topic>Calcium</topic><topic>Calcium (intracellular)</topic><topic>Calcium (reticular)</topic><topic>Calcium - chemistry</topic><topic>Calcium channels</topic><topic>Calcium channels (L-type)</topic><topic>Calcium channels (voltage-gated)</topic><topic>Calcium Channels, L-Type - metabolism</topic><topic>Calcium ions</topic><topic>Calcium Signaling</topic><topic>Calcium signalling</topic><topic>Cardiac muscle</topic><topic>Channel gating</topic><topic>Channels</topic><topic>Computational Biology</topic><topic>Computer applications</topic><topic>Computer Simulation</topic><topic>Coupling</topic><topic>Depolarization</topic><topic>Electric potential</topic><topic>Excitation Contraction Coupling</topic><topic>Funding</topic><topic>Heart</topic><topic>Heart diseases</topic><topic>Heart Rate</topic><topic>Intracellular</topic><topic>Markov Chains</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Medicine and Health Sciences</topic><topic>Membrane potential</topic><topic>Models, Biological</topic><topic>Myocardial Contraction</topic><topic>Myocardium - cytology</topic><topic>Myocytes</topic><topic>Myocytes, Cardiac - cytology</topic><topic>Normal Distribution</topic><topic>Pharmacology</topic><topic>Physical Sciences</topic><topic>Physiology</topic><topic>Programming Languages</topic><topic>Rabbits</topic><topic>Rodents</topic><topic>Sarcoplasmic reticulum</topic><topic>Sarcoplasmic Reticulum - metabolism</topic><topic>Stability</topic><topic>Stochastic Processes</topic><topic>Studies</topic><topic>Substrates</topic><topic>Supervision</topic><topic>Ventricle</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sato, Daisuke</creatorcontrib><creatorcontrib>Dixon, Rose E</creatorcontrib><creatorcontrib>Santana, Luis F</creatorcontrib><creatorcontrib>Navedo, Manuel F</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS computational biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sato, Daisuke</au><au>Dixon, Rose E</au><au>Santana, Luis F</au><au>Navedo, Manuel F</au><au>Panfilov, Alexander V</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics</atitle><jtitle>PLoS computational biology</jtitle><addtitle>PLoS Comput Biol</addtitle><date>2018-01-01</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>e1005906</spage><epage>e1005906</epage><pages>e1005906-e1005906</pages><issn>1553-7358</issn><issn>1553-734X</issn><eissn>1553-7358</eissn><abstract>In ventricular myocytes, membrane depolarization during the action potential (AP) causes synchronous activation of multiple L-type CaV1.2 channels (LTCCs), which trigger the release of calcium (Ca2+) from the sarcoplasmic reticulum (SR). This results in an increase in intracellular Ca2+ (Cai) that initiates contraction. During pulsus alternans, cardiac contraction is unstable, going from weak to strong in successive beats despite a constant heart rate. These cardiac alternans can be caused by the instability of membrane potential (Vm) due to steep AP duration (APD) restitution (Vm-driven alternans), instability of Cai cycling (Ca2+-driven alternans), or both, and may be modulated by functional coupling between clustered CaV1.2 (e.g. cooperative gating). Here, mathematical analysis and computational models were used to determine how changes in the strength of cooperative gating between LTCCs may impact membrane voltage and intracellular Ca2+ dynamics in the heart. We found that increasing the degree of coupling between LTCCs increases the amplitude of Ca2+ currents (ICaL) and prolongs AP duration (APD). Increased AP duration is known to promote cardiac alternans, a potentially arrhythmogenic substrate. In addition, our analysis shows that increasing the strength of cooperative activation of LTCCs makes the coupling of Ca2+ on the membrane voltage (Cai→Vm coupling) more positive and destabilizes the Vm-Cai dynamics for Vm-driven alternans and Cai-driven alternans, but not for quasiperiodic oscillation. These results suggest that cooperative gating of LTCCs may have a major impact on cardiac excitation-contraction coupling, not only by prolonging APD, but also by altering Cai→Vm coupling and potentially promoting cardiac arrhythmias.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29338006</pmid><doi>10.1371/journal.pcbi.1005906</doi><orcidid>https://orcid.org/0000-0001-6864-6594</orcidid><orcidid>https://orcid.org/0000-0002-4297-8029</orcidid><orcidid>https://orcid.org/0000-0001-9341-0970</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7358 |
ispartof | PLoS computational biology, 2018-01, Vol.14 (1), p.e1005906-e1005906 |
issn | 1553-7358 1553-734X 1553-7358 |
language | eng |
recordid | cdi_plos_journals_2002622732 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central |
subjects | Action potential Action Potentials Animals Arrhythmias, Cardiac - physiopathology Biology and Life Sciences Calcium Calcium (intracellular) Calcium (reticular) Calcium - chemistry Calcium channels Calcium channels (L-type) Calcium channels (voltage-gated) Calcium Channels, L-Type - metabolism Calcium ions Calcium Signaling Calcium signalling Cardiac muscle Channel gating Channels Computational Biology Computer applications Computer Simulation Coupling Depolarization Electric potential Excitation Contraction Coupling Funding Heart Heart diseases Heart Rate Intracellular Markov Chains Mathematical analysis Mathematical models Medicine and Health Sciences Membrane potential Models, Biological Myocardial Contraction Myocardium - cytology Myocytes Myocytes, Cardiac - cytology Normal Distribution Pharmacology Physical Sciences Physiology Programming Languages Rabbits Rodents Sarcoplasmic reticulum Sarcoplasmic Reticulum - metabolism Stability Stochastic Processes Studies Substrates Supervision Ventricle |
title | A model for cooperative gating of L-type Ca2+ channels and its effects on cardiac alternans dynamics |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T03%3A53%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20model%20for%20cooperative%20gating%20of%20L-type%20Ca2+%20channels%20and%20its%20effects%20on%20cardiac%20alternans%20dynamics&rft.jtitle=PLoS%20computational%20biology&rft.au=Sato,%20Daisuke&rft.date=2018-01-01&rft.volume=14&rft.issue=1&rft.spage=e1005906&rft.epage=e1005906&rft.pages=e1005906-e1005906&rft.issn=1553-7358&rft.eissn=1553-7358&rft_id=info:doi/10.1371/journal.pcbi.1005906&rft_dat=%3Cproquest_plos_%3E2002622732%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002622732&rft_id=info:pmid/29338006&rft_doaj_id=oai_doaj_org_article_345a2f24d5734d079a047225020f28f6&rfr_iscdi=true |