DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli

In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate cert...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:PLoS genetics 2018-01, Vol.14 (1), p.e1007161-e1007161
Hauptverfasser: Henrikus, Sarah S, Wood, Elizabeth A, McDonald, John P, Cox, Michael M, Woodgate, Roger, Goodman, Myron F, van Oijen, Antoine M, Robinson, Andrew
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page e1007161
container_issue 1
container_start_page e1007161
container_title PLoS genetics
container_volume 14
creator Henrikus, Sarah S
Wood, Elizabeth A
McDonald, John P
Cox, Michael M
Woodgate, Roger
Goodman, Myron F
van Oijen, Antoine M
Robinson, Andrew
description In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.
doi_str_mv 10.1371/journal.pgen.1007161
format Article
fullrecord <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2002619295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525917233</galeid><doaj_id>oai_doaj_org_article_3542e5d2321147f08e7c6c98a6df7b65</doaj_id><sourcerecordid>A525917233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MWfcXxBWpUCK1WtxEclTpbjTHZdvHGwE8T-exw2rXZRDyAfbI-feccz9mTZU4zmmAr85toPodVu3q2gnWOEBC7wvewYc05ngiF2f299lD2K8RohykspHmZHRFKOiWDH2bd3F4u88267gaAj5MurvAt2o4N129x3ydhDzP3QR1tD7pt85AN0zhrdW9_mjQ_fY27b_CyaNQRr1lbnxjv7OHvQaBfhyTSfZF_fn305_Tg7v_ywPF2cz4wgRT_jJa4QGM5KgoU0Jatr0VRQ04KbgjOJK1xXTBNZFGlP081xRcsGSkgsM4yeZM93up3zUU1ViYogRAosieSJWO6I2utrtUtvq7y26o_Bh5XSobfGgaKcEeA1oQRjJhpUgjCFkaUu6kZUxaj1doo2VBuoDbR90O5A9PCktWu18j8VF5IgQpPAq0kg-B8DxF5tbDTgnG7BD1FhWUouS16KhL74C707u4la6ZSAbRuf4ppRVC044RKLFDVR8zuoNGrYWONbaGyyHzi8PnBITA-_-pUeYlTLz5_-g734d_by6pB9uceuQbt-Hb0bxo8XD0G2A03wMQZobh8EIzV2y03l1NgtauqW5PZs_zFvnW7ag_4Gg4QMqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002619295</pqid></control><display><type>article</type><title>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Henrikus, Sarah S ; Wood, Elizabeth A ; McDonald, John P ; Cox, Michael M ; Woodgate, Roger ; Goodman, Myron F ; van Oijen, Antoine M ; Robinson, Andrew</creator><creatorcontrib>Henrikus, Sarah S ; Wood, Elizabeth A ; McDonald, John P ; Cox, Michael M ; Woodgate, Roger ; Goodman, Myron F ; van Oijen, Antoine M ; Robinson, Andrew</creatorcontrib><description>In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007161</identifier><identifier>PMID: 29351274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibiotics ; Binding Sites - genetics ; Biochemistry ; Biology and life sciences ; Childrens health ; Ciprofloxacin ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA Damage - genetics ; DNA polymerase ; DNA Polymerase beta - metabolism ; DNA Polymerase beta - physiology ; DNA polymerases ; DNA repair ; DNA Replication ; DNA sequencing ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-directed DNA polymerase ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Funding ; Gene Expression Regulation, Bacterial ; Gene Fusion ; Genetic aspects ; Genomes ; Health aspects ; Intermediates ; Laboratories ; Methods ; Microscopy ; Mutagenesis ; Mutation ; RecA protein ; Recombination ; Replication forks ; Research and Analysis Methods ; Single-stranded DNA ; Software ; SOS response ; SOS Response, Genetics - genetics ; Transcription ; Ultraviolet radiation</subject><ispartof>PLoS genetics, 2018-01, Vol.14 (1), p.e1007161-e1007161</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 14(1): e1007161. https://doi.org/10.1371/journal.pgen.1007161</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 14(1): e1007161. https://doi.org/10.1371/journal.pgen.1007161</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</citedby><cites>FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</cites><orcidid>0000-0001-9601-3284 ; 0000-0002-3544-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29351274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henrikus, Sarah S</creatorcontrib><creatorcontrib>Wood, Elizabeth A</creatorcontrib><creatorcontrib>McDonald, John P</creatorcontrib><creatorcontrib>Cox, Michael M</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>van Oijen, Antoine M</creatorcontrib><creatorcontrib>Robinson, Andrew</creatorcontrib><title>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.</description><subject>Antibiotics</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Childrens health</subject><subject>Ciprofloxacin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA polymerase</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Polymerase beta - physiology</subject><subject>DNA polymerases</subject><subject>DNA repair</subject><subject>DNA Replication</subject><subject>DNA sequencing</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-directed DNA polymerase</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Funding</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Fusion</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Intermediates</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>RecA protein</subject><subject>Recombination</subject><subject>Replication forks</subject><subject>Research and Analysis Methods</subject><subject>Single-stranded DNA</subject><subject>Software</subject><subject>SOS response</subject><subject>SOS Response, Genetics - genetics</subject><subject>Transcription</subject><subject>Ultraviolet radiation</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MWfcXxBWpUCK1WtxEclTpbjTHZdvHGwE8T-exw2rXZRDyAfbI-feccz9mTZU4zmmAr85toPodVu3q2gnWOEBC7wvewYc05ngiF2f299lD2K8RohykspHmZHRFKOiWDH2bd3F4u88267gaAj5MurvAt2o4N129x3ydhDzP3QR1tD7pt85AN0zhrdW9_mjQ_fY27b_CyaNQRr1lbnxjv7OHvQaBfhyTSfZF_fn305_Tg7v_ywPF2cz4wgRT_jJa4QGM5KgoU0Jatr0VRQ04KbgjOJK1xXTBNZFGlP081xRcsGSkgsM4yeZM93up3zUU1ViYogRAosieSJWO6I2utrtUtvq7y26o_Bh5XSobfGgaKcEeA1oQRjJhpUgjCFkaUu6kZUxaj1doo2VBuoDbR90O5A9PCktWu18j8VF5IgQpPAq0kg-B8DxF5tbDTgnG7BD1FhWUouS16KhL74C707u4la6ZSAbRuf4ppRVC044RKLFDVR8zuoNGrYWONbaGyyHzi8PnBITA-_-pUeYlTLz5_-g734d_by6pB9uceuQbt-Hb0bxo8XD0G2A03wMQZobh8EIzV2y03l1NgtauqW5PZs_zFvnW7ag_4Gg4QMqQ</recordid><startdate>20180119</startdate><enddate>20180119</enddate><creator>Henrikus, Sarah S</creator><creator>Wood, Elizabeth A</creator><creator>McDonald, John P</creator><creator>Cox, Michael M</creator><creator>Woodgate, Roger</creator><creator>Goodman, Myron F</creator><creator>van Oijen, Antoine M</creator><creator>Robinson, Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9601-3284</orcidid><orcidid>https://orcid.org/0000-0002-3544-0976</orcidid></search><sort><creationdate>20180119</creationdate><title>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</title><author>Henrikus, Sarah S ; Wood, Elizabeth A ; McDonald, John P ; Cox, Michael M ; Woodgate, Roger ; Goodman, Myron F ; van Oijen, Antoine M ; Robinson, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibiotics</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Childrens health</topic><topic>Ciprofloxacin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA polymerase</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Polymerase beta - physiology</topic><topic>DNA polymerases</topic><topic>DNA repair</topic><topic>DNA Replication</topic><topic>DNA sequencing</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-directed DNA polymerase</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Funding</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Fusion</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Intermediates</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>RecA protein</topic><topic>Recombination</topic><topic>Replication forks</topic><topic>Research and Analysis Methods</topic><topic>Single-stranded DNA</topic><topic>Software</topic><topic>SOS response</topic><topic>SOS Response, Genetics - genetics</topic><topic>Transcription</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henrikus, Sarah S</creatorcontrib><creatorcontrib>Wood, Elizabeth A</creatorcontrib><creatorcontrib>McDonald, John P</creatorcontrib><creatorcontrib>Cox, Michael M</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>van Oijen, Antoine M</creatorcontrib><creatorcontrib>Robinson, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henrikus, Sarah S</au><au>Wood, Elizabeth A</au><au>McDonald, John P</au><au>Cox, Michael M</au><au>Woodgate, Roger</au><au>Goodman, Myron F</au><au>van Oijen, Antoine M</au><au>Robinson, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-01-19</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>e1007161</spage><epage>e1007161</epage><pages>e1007161-e1007161</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29351274</pmid><doi>10.1371/journal.pgen.1007161</doi><orcidid>https://orcid.org/0000-0001-9601-3284</orcidid><orcidid>https://orcid.org/0000-0002-3544-0976</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1553-7404
ispartof PLoS genetics, 2018-01, Vol.14 (1), p.e1007161-e1007161
issn 1553-7404
1553-7390
1553-7404
language eng
recordid cdi_plos_journals_2002619295
source Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Antibiotics
Binding Sites - genetics
Biochemistry
Biology and life sciences
Childrens health
Ciprofloxacin
Deoxyribonucleic acid
DNA
DNA biosynthesis
DNA damage
DNA Damage - genetics
DNA polymerase
DNA Polymerase beta - metabolism
DNA Polymerase beta - physiology
DNA polymerases
DNA repair
DNA Replication
DNA sequencing
DNA, Bacterial - genetics
DNA, Bacterial - metabolism
DNA-directed DNA polymerase
E coli
Escherichia coli
Escherichia coli - genetics
Escherichia coli - metabolism
Escherichia coli Proteins
Funding
Gene Expression Regulation, Bacterial
Gene Fusion
Genetic aspects
Genomes
Health aspects
Intermediates
Laboratories
Methods
Microscopy
Mutagenesis
Mutation
RecA protein
Recombination
Replication forks
Research and Analysis Methods
Single-stranded DNA
Software
SOS response
SOS Response, Genetics - genetics
Transcription
Ultraviolet radiation
title DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20polymerase%20IV%20primarily%20operates%20outside%20of%20DNA%20replication%20forks%20in%20Escherichia%20coli&rft.jtitle=PLoS%20genetics&rft.au=Henrikus,%20Sarah%20S&rft.date=2018-01-19&rft.volume=14&rft.issue=1&rft.spage=e1007161&rft.epage=e1007161&rft.pages=e1007161-e1007161&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007161&rft_dat=%3Cgale_plos_%3EA525917233%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002619295&rft_id=info:pmid/29351274&rft_galeid=A525917233&rft_doaj_id=oai_doaj_org_article_3542e5d2321147f08e7c6c98a6df7b65&rfr_iscdi=true