DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli
In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate cert...
Gespeichert in:
Veröffentlicht in: | PLoS genetics 2018-01, Vol.14 (1), p.e1007161-e1007161 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e1007161 |
---|---|
container_issue | 1 |
container_start_page | e1007161 |
container_title | PLoS genetics |
container_volume | 14 |
creator | Henrikus, Sarah S Wood, Elizabeth A McDonald, John P Cox, Michael M Woodgate, Roger Goodman, Myron F van Oijen, Antoine M Robinson, Andrew |
description | In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites. |
doi_str_mv | 10.1371/journal.pgen.1007161 |
format | Article |
fullrecord | <record><control><sourceid>gale_plos_</sourceid><recordid>TN_cdi_plos_journals_2002619295</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A525917233</galeid><doaj_id>oai_doaj_org_article_3542e5d2321147f08e7c6c98a6df7b65</doaj_id><sourcerecordid>A525917233</sourcerecordid><originalsourceid>FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</originalsourceid><addsrcrecordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MWfcXxBWpUCK1WtxEclTpbjTHZdvHGwE8T-exw2rXZRDyAfbI-feccz9mTZU4zmmAr85toPodVu3q2gnWOEBC7wvewYc05ngiF2f299lD2K8RohykspHmZHRFKOiWDH2bd3F4u88267gaAj5MurvAt2o4N129x3ydhDzP3QR1tD7pt85AN0zhrdW9_mjQ_fY27b_CyaNQRr1lbnxjv7OHvQaBfhyTSfZF_fn305_Tg7v_ywPF2cz4wgRT_jJa4QGM5KgoU0Jatr0VRQ04KbgjOJK1xXTBNZFGlP081xRcsGSkgsM4yeZM93up3zUU1ViYogRAosieSJWO6I2utrtUtvq7y26o_Bh5XSobfGgaKcEeA1oQRjJhpUgjCFkaUu6kZUxaj1doo2VBuoDbR90O5A9PCktWu18j8VF5IgQpPAq0kg-B8DxF5tbDTgnG7BD1FhWUouS16KhL74C707u4la6ZSAbRuf4ppRVC044RKLFDVR8zuoNGrYWONbaGyyHzi8PnBITA-_-pUeYlTLz5_-g734d_by6pB9uceuQbt-Hb0bxo8XD0G2A03wMQZobh8EIzV2y03l1NgtauqW5PZs_zFvnW7ag_4Gg4QMqQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2002619295</pqid></control><display><type>article</type><title>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</title><source>Public Library of Science (PLoS) Journals Open Access</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Henrikus, Sarah S ; Wood, Elizabeth A ; McDonald, John P ; Cox, Michael M ; Woodgate, Roger ; Goodman, Myron F ; van Oijen, Antoine M ; Robinson, Andrew</creator><creatorcontrib>Henrikus, Sarah S ; Wood, Elizabeth A ; McDonald, John P ; Cox, Michael M ; Woodgate, Roger ; Goodman, Myron F ; van Oijen, Antoine M ; Robinson, Andrew</creatorcontrib><description>In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.</description><identifier>ISSN: 1553-7404</identifier><identifier>ISSN: 1553-7390</identifier><identifier>EISSN: 1553-7404</identifier><identifier>DOI: 10.1371/journal.pgen.1007161</identifier><identifier>PMID: 29351274</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Antibiotics ; Binding Sites - genetics ; Biochemistry ; Biology and life sciences ; Childrens health ; Ciprofloxacin ; Deoxyribonucleic acid ; DNA ; DNA biosynthesis ; DNA damage ; DNA Damage - genetics ; DNA polymerase ; DNA Polymerase beta - metabolism ; DNA Polymerase beta - physiology ; DNA polymerases ; DNA repair ; DNA Replication ; DNA sequencing ; DNA, Bacterial - genetics ; DNA, Bacterial - metabolism ; DNA-directed DNA polymerase ; E coli ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli - metabolism ; Escherichia coli Proteins ; Funding ; Gene Expression Regulation, Bacterial ; Gene Fusion ; Genetic aspects ; Genomes ; Health aspects ; Intermediates ; Laboratories ; Methods ; Microscopy ; Mutagenesis ; Mutation ; RecA protein ; Recombination ; Replication forks ; Research and Analysis Methods ; Single-stranded DNA ; Software ; SOS response ; SOS Response, Genetics - genetics ; Transcription ; Ultraviolet radiation</subject><ispartof>PLoS genetics, 2018-01, Vol.14 (1), p.e1007161-e1007161</ispartof><rights>COPYRIGHT 2018 Public Library of Science</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 14(1): e1007161. https://doi.org/10.1371/journal.pgen.1007161</rights><rights>2018 Public Library of Science. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited: . PLoS Genet 14(1): e1007161. https://doi.org/10.1371/journal.pgen.1007161</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</citedby><cites>FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</cites><orcidid>0000-0001-9601-3284 ; 0000-0002-3544-0976</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792023/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5792023/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2096,2915,23845,27901,27902,53766,53768,79342,79343</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29351274$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Henrikus, Sarah S</creatorcontrib><creatorcontrib>Wood, Elizabeth A</creatorcontrib><creatorcontrib>McDonald, John P</creatorcontrib><creatorcontrib>Cox, Michael M</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>van Oijen, Antoine M</creatorcontrib><creatorcontrib>Robinson, Andrew</creatorcontrib><title>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</title><title>PLoS genetics</title><addtitle>PLoS Genet</addtitle><description>In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.</description><subject>Antibiotics</subject><subject>Binding Sites - genetics</subject><subject>Biochemistry</subject><subject>Biology and life sciences</subject><subject>Childrens health</subject><subject>Ciprofloxacin</subject><subject>Deoxyribonucleic acid</subject><subject>DNA</subject><subject>DNA biosynthesis</subject><subject>DNA damage</subject><subject>DNA Damage - genetics</subject><subject>DNA polymerase</subject><subject>DNA Polymerase beta - metabolism</subject><subject>DNA Polymerase beta - physiology</subject><subject>DNA polymerases</subject><subject>DNA repair</subject><subject>DNA Replication</subject><subject>DNA sequencing</subject><subject>DNA, Bacterial - genetics</subject><subject>DNA, Bacterial - metabolism</subject><subject>DNA-directed DNA polymerase</subject><subject>E coli</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli - metabolism</subject><subject>Escherichia coli Proteins</subject><subject>Funding</subject><subject>Gene Expression Regulation, Bacterial</subject><subject>Gene Fusion</subject><subject>Genetic aspects</subject><subject>Genomes</subject><subject>Health aspects</subject><subject>Intermediates</subject><subject>Laboratories</subject><subject>Methods</subject><subject>Microscopy</subject><subject>Mutagenesis</subject><subject>Mutation</subject><subject>RecA protein</subject><subject>Recombination</subject><subject>Replication forks</subject><subject>Research and Analysis Methods</subject><subject>Single-stranded DNA</subject><subject>Software</subject><subject>SOS response</subject><subject>SOS Response, Genetics - genetics</subject><subject>Transcription</subject><subject>Ultraviolet radiation</subject><issn>1553-7404</issn><issn>1553-7390</issn><issn>1553-7404</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><sourceid>DOA</sourceid><recordid>eNqVk01v1DAQhiMEoqXwDxBEQkJw2MWfcXxBWpUCK1WtxEclTpbjTHZdvHGwE8T-exw2rXZRDyAfbI-feccz9mTZU4zmmAr85toPodVu3q2gnWOEBC7wvewYc05ngiF2f299lD2K8RohykspHmZHRFKOiWDH2bd3F4u88267gaAj5MurvAt2o4N129x3ydhDzP3QR1tD7pt85AN0zhrdW9_mjQ_fY27b_CyaNQRr1lbnxjv7OHvQaBfhyTSfZF_fn305_Tg7v_ywPF2cz4wgRT_jJa4QGM5KgoU0Jatr0VRQ04KbgjOJK1xXTBNZFGlP081xRcsGSkgsM4yeZM93up3zUU1ViYogRAosieSJWO6I2utrtUtvq7y26o_Bh5XSobfGgaKcEeA1oQRjJhpUgjCFkaUu6kZUxaj1doo2VBuoDbR90O5A9PCktWu18j8VF5IgQpPAq0kg-B8DxF5tbDTgnG7BD1FhWUouS16KhL74C707u4la6ZSAbRuf4ppRVC044RKLFDVR8zuoNGrYWONbaGyyHzi8PnBITA-_-pUeYlTLz5_-g734d_by6pB9uceuQbt-Hb0bxo8XD0G2A03wMQZobh8EIzV2y03l1NgtauqW5PZs_zFvnW7ag_4Gg4QMqQ</recordid><startdate>20180119</startdate><enddate>20180119</enddate><creator>Henrikus, Sarah S</creator><creator>Wood, Elizabeth A</creator><creator>McDonald, John P</creator><creator>Cox, Michael M</creator><creator>Woodgate, Roger</creator><creator>Goodman, Myron F</creator><creator>van Oijen, Antoine M</creator><creator>Robinson, Andrew</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISN</scope><scope>ISR</scope><scope>3V.</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-9601-3284</orcidid><orcidid>https://orcid.org/0000-0002-3544-0976</orcidid></search><sort><creationdate>20180119</creationdate><title>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</title><author>Henrikus, Sarah S ; Wood, Elizabeth A ; McDonald, John P ; Cox, Michael M ; Woodgate, Roger ; Goodman, Myron F ; van Oijen, Antoine M ; Robinson, Andrew</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c726t-581b0ec5482179c84dd7fbed365c65491b1db4a2966c6532931b38fe8ec844c43</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Antibiotics</topic><topic>Binding Sites - genetics</topic><topic>Biochemistry</topic><topic>Biology and life sciences</topic><topic>Childrens health</topic><topic>Ciprofloxacin</topic><topic>Deoxyribonucleic acid</topic><topic>DNA</topic><topic>DNA biosynthesis</topic><topic>DNA damage</topic><topic>DNA Damage - genetics</topic><topic>DNA polymerase</topic><topic>DNA Polymerase beta - metabolism</topic><topic>DNA Polymerase beta - physiology</topic><topic>DNA polymerases</topic><topic>DNA repair</topic><topic>DNA Replication</topic><topic>DNA sequencing</topic><topic>DNA, Bacterial - genetics</topic><topic>DNA, Bacterial - metabolism</topic><topic>DNA-directed DNA polymerase</topic><topic>E coli</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli - metabolism</topic><topic>Escherichia coli Proteins</topic><topic>Funding</topic><topic>Gene Expression Regulation, Bacterial</topic><topic>Gene Fusion</topic><topic>Genetic aspects</topic><topic>Genomes</topic><topic>Health aspects</topic><topic>Intermediates</topic><topic>Laboratories</topic><topic>Methods</topic><topic>Microscopy</topic><topic>Mutagenesis</topic><topic>Mutation</topic><topic>RecA protein</topic><topic>Recombination</topic><topic>Replication forks</topic><topic>Research and Analysis Methods</topic><topic>Single-stranded DNA</topic><topic>Software</topic><topic>SOS response</topic><topic>SOS Response, Genetics - genetics</topic><topic>Transcription</topic><topic>Ultraviolet radiation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Henrikus, Sarah S</creatorcontrib><creatorcontrib>Wood, Elizabeth A</creatorcontrib><creatorcontrib>McDonald, John P</creatorcontrib><creatorcontrib>Cox, Michael M</creatorcontrib><creatorcontrib>Woodgate, Roger</creatorcontrib><creatorcontrib>Goodman, Myron F</creatorcontrib><creatorcontrib>van Oijen, Antoine M</creatorcontrib><creatorcontrib>Robinson, Andrew</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Canada</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PLoS genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Henrikus, Sarah S</au><au>Wood, Elizabeth A</au><au>McDonald, John P</au><au>Cox, Michael M</au><au>Woodgate, Roger</au><au>Goodman, Myron F</au><au>van Oijen, Antoine M</au><au>Robinson, Andrew</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli</atitle><jtitle>PLoS genetics</jtitle><addtitle>PLoS Genet</addtitle><date>2018-01-19</date><risdate>2018</risdate><volume>14</volume><issue>1</issue><spage>e1007161</spage><epage>e1007161</epage><pages>e1007161-e1007161</pages><issn>1553-7404</issn><issn>1553-7390</issn><eissn>1553-7404</eissn><abstract>In Escherichia coli, damage to the chromosomal DNA induces the SOS response, setting in motion a series of different DNA repair and damage tolerance pathways. DNA polymerase IV (pol IV) is one of three specialised DNA polymerases called into action during the SOS response to help cells tolerate certain types of DNA damage. The canonical view in the field is that pol IV primarily acts at replisomes that have stalled on the damaged DNA template. However, the results of several studies indicate that pol IV also acts on other substrates, including single-stranded DNA gaps left behind replisomes that re-initiate replication downstream of a lesion, stalled transcription complexes and recombination intermediates. In this study, we use single-molecule time-lapse microscopy to directly visualize fluorescently labelled pol IV in live cells. We treat cells with the DNA-damaging antibiotic ciprofloxacin, Methylmethane sulfonate (MMS) or ultraviolet light and measure changes in pol IV concentrations and cellular locations through time. We observe that only 5-10% of foci induced by DNA damage form close to replisomes, suggesting that pol IV predominantly carries out non-replisomal functions. The minority of foci that do form close to replisomes exhibit a broad distribution of colocalisation distances, consistent with a significant proportion of pol IV molecules carrying out postreplicative TLS in gaps behind the replisome. Interestingly, the proportion of pol IV foci that form close to replisomes drops dramatically in the period 90-180 min after treatment, despite pol IV concentrations remaining relatively constant. In an SOS-constitutive mutant that expresses high levels of pol IV, few foci are observed in the absence of damage, indicating that within cells access of pol IV to DNA is dependent on the presence of damage, as opposed to concentration-driven competition for binding sites.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29351274</pmid><doi>10.1371/journal.pgen.1007161</doi><orcidid>https://orcid.org/0000-0001-9601-3284</orcidid><orcidid>https://orcid.org/0000-0002-3544-0976</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1553-7404 |
ispartof | PLoS genetics, 2018-01, Vol.14 (1), p.e1007161-e1007161 |
issn | 1553-7404 1553-7390 1553-7404 |
language | eng |
recordid | cdi_plos_journals_2002619295 |
source | Public Library of Science (PLoS) Journals Open Access; MEDLINE; DOAJ Directory of Open Access Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | Antibiotics Binding Sites - genetics Biochemistry Biology and life sciences Childrens health Ciprofloxacin Deoxyribonucleic acid DNA DNA biosynthesis DNA damage DNA Damage - genetics DNA polymerase DNA Polymerase beta - metabolism DNA Polymerase beta - physiology DNA polymerases DNA repair DNA Replication DNA sequencing DNA, Bacterial - genetics DNA, Bacterial - metabolism DNA-directed DNA polymerase E coli Escherichia coli Escherichia coli - genetics Escherichia coli - metabolism Escherichia coli Proteins Funding Gene Expression Regulation, Bacterial Gene Fusion Genetic aspects Genomes Health aspects Intermediates Laboratories Methods Microscopy Mutagenesis Mutation RecA protein Recombination Replication forks Research and Analysis Methods Single-stranded DNA Software SOS response SOS Response, Genetics - genetics Transcription Ultraviolet radiation |
title | DNA polymerase IV primarily operates outside of DNA replication forks in Escherichia coli |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T01%3A37%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=DNA%20polymerase%20IV%20primarily%20operates%20outside%20of%20DNA%20replication%20forks%20in%20Escherichia%20coli&rft.jtitle=PLoS%20genetics&rft.au=Henrikus,%20Sarah%20S&rft.date=2018-01-19&rft.volume=14&rft.issue=1&rft.spage=e1007161&rft.epage=e1007161&rft.pages=e1007161-e1007161&rft.issn=1553-7404&rft.eissn=1553-7404&rft_id=info:doi/10.1371/journal.pgen.1007161&rft_dat=%3Cgale_plos_%3EA525917233%3C/gale_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2002619295&rft_id=info:pmid/29351274&rft_galeid=A525917233&rft_doaj_id=oai_doaj_org_article_3542e5d2321147f08e7c6c98a6df7b65&rfr_iscdi=true |