Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera
General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1-2, PBP-A-D) previously reported to form a complex ar...
Gespeichert in:
Veröffentlicht in: | PloS one 2018-02, Vol.13 (2), p.e0192762-e0192762 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | e0192762 |
---|---|
container_issue | 2 |
container_start_page | e0192762 |
container_title | PloS one |
container_volume | 13 |
creator | Yasukochi, Yuji Yang, Bin Fujimoto, Toshiaki Sahara, Ken Matsuo, Takashi Ishikawa, Yukio |
description | General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1-2, PBP-A-D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69-149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia. |
doi_str_mv | 10.1371/journal.pone.0192762 |
format | Article |
fullrecord | <record><control><sourceid>proquest_plos_</sourceid><recordid>TN_cdi_plos_journals_2000034547</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_297ca58af1ba45c89c0ab355e4d7a60d</doaj_id><sourcerecordid>2000034547</sourcerecordid><originalsourceid>FETCH-LOGICAL-c636t-4fd25458b584f65c711d99415a4c35bebf695d65b7538697af7fa53fe3fda4753</originalsourceid><addsrcrecordid>eNptUk1vEzEQXSEQLYV_gMASFy5J1-uP3b0gtRGUSpGaA5ytWXucOnLsxd5Uzb9n02yrFuGLrfF7b96MXlF8pOWcspqeb-IuBfDzPgacl7Stalm9Kk5py6qZrEr2-tn7pHiX86YsBWukfFucVC2vRCX4aXG_iCFjuoPBxUAgGOJdQFjjLPeonXWaJISUIKxxi2HIxAUy3CK5urlcna8uV2SNAYmO297jPYmWGJcHCIPfj0QPA5qxMqR9dhDIEntnYj9ggvfFGws-44fpPit-__j-a_Fztry5ul5cLGdaMjnMuDWjT9F0ouFWCl1TatqWUwFcM9FhZ2UrjBRdfZitrcHWFgSzyKwBPhbPis9H3d7HrKalZVWV42Fc8HpEXB8RJsJG9cltIe1VBKceCjGtFaTBaY-qamsNogFLO-BCN60uoWNCIDc1yNKMWt-mbrtui0aPG0vgX4i-_AnuVq3jnRJNKZtGjgJfJ4EU_-wwD2rrskbvIWDcPfimI5LWB99f_oH-fzp-ROkUc05on8zQUh2C9MhShyCpKUgj7dPzQZ5Ij8lhfwE8kciM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2000034547</pqid></control><display><type>article</type><title>Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Public Library of Science (PLoS)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Yasukochi, Yuji ; Yang, Bin ; Fujimoto, Toshiaki ; Sahara, Ken ; Matsuo, Takashi ; Ishikawa, Yukio</creator><contributor>Newcomb, Richard David</contributor><creatorcontrib>Yasukochi, Yuji ; Yang, Bin ; Fujimoto, Toshiaki ; Sahara, Ken ; Matsuo, Takashi ; Ishikawa, Yukio ; Newcomb, Richard David</creatorcontrib><description>General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1-2, PBP-A-D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69-149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia.</description><identifier>ISSN: 1932-6203</identifier><identifier>EISSN: 1932-6203</identifier><identifier>DOI: 10.1371/journal.pone.0192762</identifier><identifier>PMID: 29425254</identifier><language>eng</language><publisher>United States: Public Library of Science</publisher><subject>Agriculture ; Artificial chromosomes ; Bacterial artificial chromosomes ; Binding ; Bioinformatics ; Biology ; Biology and Life Sciences ; Bombycoidea ; Butterflies ; Butterflies & moths ; Chromosome translocations ; Cloning ; Conservation ; Danaus plexippus ; Evolution ; Fluorescence ; Fluorescence in situ hybridization ; Fusion protein ; Gene order ; Gene sequencing ; Genes ; Genomes ; Genomics ; Insects ; Inversions ; Laboratories ; Lepidoptera ; Life sciences ; Medical screening ; Methods ; Moths ; Ostrinia ; Ostrinia nubilalis ; Pbp gene ; Pheromones ; Proteins ; Reproduction (copying) ; Research and analysis methods ; Sex pheromone ; Subgroups ; Translocation</subject><ispartof>PloS one, 2018-02, Vol.13 (2), p.e0192762-e0192762</ispartof><rights>2018 Yasukochi et al. This is an open access article distributed under the terms of the Creative Commons Attribution License: http://creativecommons.org/licenses/by/4.0/ (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018 Yasukochi et al 2018 Yasukochi et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c636t-4fd25458b584f65c711d99415a4c35bebf695d65b7538697af7fa53fe3fda4753</citedby><cites>FETCH-LOGICAL-c636t-4fd25458b584f65c711d99415a4c35bebf695d65b7538697af7fa53fe3fda4753</cites><orcidid>0000-0003-1541-4057</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806886/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC5806886/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,861,882,2096,2915,23847,27905,27906,53772,53774,79349,79350</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/29425254$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Newcomb, Richard David</contributor><creatorcontrib>Yasukochi, Yuji</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Fujimoto, Toshiaki</creatorcontrib><creatorcontrib>Sahara, Ken</creatorcontrib><creatorcontrib>Matsuo, Takashi</creatorcontrib><creatorcontrib>Ishikawa, Yukio</creatorcontrib><title>Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera</title><title>PloS one</title><addtitle>PLoS One</addtitle><description>General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1-2, PBP-A-D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69-149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia.</description><subject>Agriculture</subject><subject>Artificial chromosomes</subject><subject>Bacterial artificial chromosomes</subject><subject>Binding</subject><subject>Bioinformatics</subject><subject>Biology</subject><subject>Biology and Life Sciences</subject><subject>Bombycoidea</subject><subject>Butterflies</subject><subject>Butterflies & moths</subject><subject>Chromosome translocations</subject><subject>Cloning</subject><subject>Conservation</subject><subject>Danaus plexippus</subject><subject>Evolution</subject><subject>Fluorescence</subject><subject>Fluorescence in situ hybridization</subject><subject>Fusion protein</subject><subject>Gene order</subject><subject>Gene sequencing</subject><subject>Genes</subject><subject>Genomes</subject><subject>Genomics</subject><subject>Insects</subject><subject>Inversions</subject><subject>Laboratories</subject><subject>Lepidoptera</subject><subject>Life sciences</subject><subject>Medical screening</subject><subject>Methods</subject><subject>Moths</subject><subject>Ostrinia</subject><subject>Ostrinia nubilalis</subject><subject>Pbp gene</subject><subject>Pheromones</subject><subject>Proteins</subject><subject>Reproduction (copying)</subject><subject>Research and analysis methods</subject><subject>Sex pheromone</subject><subject>Subgroups</subject><subject>Translocation</subject><issn>1932-6203</issn><issn>1932-6203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>DOA</sourceid><recordid>eNptUk1vEzEQXSEQLYV_gMASFy5J1-uP3b0gtRGUSpGaA5ytWXucOnLsxd5Uzb9n02yrFuGLrfF7b96MXlF8pOWcspqeb-IuBfDzPgacl7Stalm9Kk5py6qZrEr2-tn7pHiX86YsBWukfFucVC2vRCX4aXG_iCFjuoPBxUAgGOJdQFjjLPeonXWaJISUIKxxi2HIxAUy3CK5urlcna8uV2SNAYmO297jPYmWGJcHCIPfj0QPA5qxMqR9dhDIEntnYj9ggvfFGws-44fpPit-__j-a_Fztry5ul5cLGdaMjnMuDWjT9F0ouFWCl1TatqWUwFcM9FhZ2UrjBRdfZitrcHWFgSzyKwBPhbPis9H3d7HrKalZVWV42Fc8HpEXB8RJsJG9cltIe1VBKceCjGtFaTBaY-qamsNogFLO-BCN60uoWNCIDc1yNKMWt-mbrtui0aPG0vgX4i-_AnuVq3jnRJNKZtGjgJfJ4EU_-wwD2rrskbvIWDcPfimI5LWB99f_oH-fzp-ROkUc05on8zQUh2C9MhShyCpKUgj7dPzQZ5Ij8lhfwE8kciM</recordid><startdate>20180209</startdate><enddate>20180209</enddate><creator>Yasukochi, Yuji</creator><creator>Yang, Bin</creator><creator>Fujimoto, Toshiaki</creator><creator>Sahara, Ken</creator><creator>Matsuo, Takashi</creator><creator>Ishikawa, Yukio</creator><general>Public Library of Science</general><general>Public Library of Science (PLoS)</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QO</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7T5</scope><scope>7TG</scope><scope>7TM</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-1541-4057</orcidid></search><sort><creationdate>20180209</creationdate><title>Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera</title><author>Yasukochi, Yuji ; Yang, Bin ; Fujimoto, Toshiaki ; Sahara, Ken ; Matsuo, Takashi ; Ishikawa, Yukio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c636t-4fd25458b584f65c711d99415a4c35bebf695d65b7538697af7fa53fe3fda4753</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Agriculture</topic><topic>Artificial chromosomes</topic><topic>Bacterial artificial chromosomes</topic><topic>Binding</topic><topic>Bioinformatics</topic><topic>Biology</topic><topic>Biology and Life Sciences</topic><topic>Bombycoidea</topic><topic>Butterflies</topic><topic>Butterflies & moths</topic><topic>Chromosome translocations</topic><topic>Cloning</topic><topic>Conservation</topic><topic>Danaus plexippus</topic><topic>Evolution</topic><topic>Fluorescence</topic><topic>Fluorescence in situ hybridization</topic><topic>Fusion protein</topic><topic>Gene order</topic><topic>Gene sequencing</topic><topic>Genes</topic><topic>Genomes</topic><topic>Genomics</topic><topic>Insects</topic><topic>Inversions</topic><topic>Laboratories</topic><topic>Lepidoptera</topic><topic>Life sciences</topic><topic>Medical screening</topic><topic>Methods</topic><topic>Moths</topic><topic>Ostrinia</topic><topic>Ostrinia nubilalis</topic><topic>Pbp gene</topic><topic>Pheromones</topic><topic>Proteins</topic><topic>Reproduction (copying)</topic><topic>Research and analysis methods</topic><topic>Sex pheromone</topic><topic>Subgroups</topic><topic>Translocation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yasukochi, Yuji</creatorcontrib><creatorcontrib>Yang, Bin</creatorcontrib><creatorcontrib>Fujimoto, Toshiaki</creatorcontrib><creatorcontrib>Sahara, Ken</creatorcontrib><creatorcontrib>Matsuo, Takashi</creatorcontrib><creatorcontrib>Ishikawa, Yukio</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing & Allied Health Database</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>Environmental Science Collection</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>PloS one</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yasukochi, Yuji</au><au>Yang, Bin</au><au>Fujimoto, Toshiaki</au><au>Sahara, Ken</au><au>Matsuo, Takashi</au><au>Ishikawa, Yukio</au><au>Newcomb, Richard David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera</atitle><jtitle>PloS one</jtitle><addtitle>PLoS One</addtitle><date>2018-02-09</date><risdate>2018</risdate><volume>13</volume><issue>2</issue><spage>e0192762</spage><epage>e0192762</epage><pages>e0192762-e0192762</pages><issn>1932-6203</issn><eissn>1932-6203</eissn><abstract>General odorant binding proteins (GOBPs) and pheromone binding proteins (PBPs) form a monophyletic subfamily of insect odorant binding proteins (OBPs) specific for Lepidoptera, butterflies and moths. The GOBP/PBP genes include six subgroups (GOBP1-2, PBP-A-D) previously reported to form a complex arrayed in a conserved order in representative moths (superfamily Bombycoidea) and butterflies (Nymphalidae). Although our knowledge of lepidopteran genomes has increased greatly recently, the structure of the GOBP/PBP complex has been studied only for species that represent limited lineages of the highly diverged Ditrysia. To understand the evolution of this functionally important gene complex, we determined 69-149 kb genomic sequences that include GOBP2 and five PBP genes in three Ostrinia moths (Pyraloidea), O. nubilalis, O. furnacalis, and O. latipennis, using bacterial artificial chromosome (BAC) and fosmid clones. The structure of the GOBP2/PBP gene cluster was well conserved despite the different sex pheromone composition utilized by the three moths. Five expressed PBP genes in Ostrinia moths were the result of two duplications of PBP-A genes. Surprisingly, an allele containing a fusion gene between tandemly arrayed PBP-A genes was observed in O. nubilalis. We also revealed duplication and intra-chromosomal translocation of the GOBP1 gene in P. xylostella by fluorescence in situ hybridization (FISH) analysis. Additionally, we compared the structure of the GOBP/PBP gene complex of seventeen species covering six superfamilies and twelve families of the lepidopteran clade, Ditrysia, and found the gene order was basically conserved despite the frequent occurrence of lineage-specific gains, losses, inversions and translocations of these genes, compared with their neighboring genes. Our findings support the hypothesis that the structure of the GOBP/PBP gene complex was already established in the common ancestor of Ditrysia.</abstract><cop>United States</cop><pub>Public Library of Science</pub><pmid>29425254</pmid><doi>10.1371/journal.pone.0192762</doi><orcidid>https://orcid.org/0000-0003-1541-4057</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1932-6203 |
ispartof | PloS one, 2018-02, Vol.13 (2), p.e0192762-e0192762 |
issn | 1932-6203 1932-6203 |
language | eng |
recordid | cdi_plos_journals_2000034547 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Public Library of Science (PLoS); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Agriculture Artificial chromosomes Bacterial artificial chromosomes Binding Bioinformatics Biology Biology and Life Sciences Bombycoidea Butterflies Butterflies & moths Chromosome translocations Cloning Conservation Danaus plexippus Evolution Fluorescence Fluorescence in situ hybridization Fusion protein Gene order Gene sequencing Genes Genomes Genomics Insects Inversions Laboratories Lepidoptera Life sciences Medical screening Methods Moths Ostrinia Ostrinia nubilalis Pbp gene Pheromones Proteins Reproduction (copying) Research and analysis methods Sex pheromone Subgroups Translocation |
title | Conservation and lineage-specific rearrangements in the GOBP/PBP gene complex of distantly related ditrysian Lepidoptera |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-18T03%3A10%3A24IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_plos_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Conservation%20and%20lineage-specific%20rearrangements%20in%20the%20GOBP/PBP%20gene%20complex%20of%20distantly%20related%20ditrysian%20Lepidoptera&rft.jtitle=PloS%20one&rft.au=Yasukochi,%20Yuji&rft.date=2018-02-09&rft.volume=13&rft.issue=2&rft.spage=e0192762&rft.epage=e0192762&rft.pages=e0192762-e0192762&rft.issn=1932-6203&rft.eissn=1932-6203&rft_id=info:doi/10.1371/journal.pone.0192762&rft_dat=%3Cproquest_plos_%3E2000034547%3C/proquest_plos_%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=2000034547&rft_id=info:pmid/29425254&rft_doaj_id=oai_doaj_org_article_297ca58af1ba45c89c0ab355e4d7a60d&rfr_iscdi=true |